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Zusammenfassung

Im Verlauf der letzten Jahrzehnte haben sich eingebettete Systeme so weit verbreitet, dass sie inzwischen
das Kernstück fast aller elektronischen Geräte darstellen, die in den letzten Jahren hergestellt wurden. Eine
besondere Unterart dieser eingebetteten Systeme stellen die Echtzeitsysteme dar, welche vorhersagbar und
zuverlässig funktionieren müssen. Diese Echtzeitsysteme werden hauptsächlich für sicherheitskritische
Systeme verwendet, für welche garantiert werden muss, dass diese korrekt und wie erwartet arbeiten.

Im Automobilbereich werden diese Echtzeitsysteme genutzt, um viele wichtige Funktionen umzusetzen,
hierzu gehören beispielsweise Fahrassistenzsysteme und x-by-Wire-Architekturen. In einem modernen
Fahrzeug ûnden sich nicht nur ein oder zwei solcher Echtzeitsysteme, sondern ein Netzwerk bestehend
aus o� hunderten einzelnen Steuergeräten. Es ist üblich, dass eine Funktion auf mehrere dieser Geräte
aufgeteilt wird, sodass ein komplexes System voller möglicher Wechselwirkungen entsteht.
Da diese Systeme sicherheitskritisch sind und Fehlfunktionen den Verlust von Menschenleben zur

Folge haben könnten, werden diese sehr ausgiebig getestet bevor die Serienproduktion des Fahrzeuges
beginnt. Wenn die Ergebnisse dieser Tests zeigen, dass das Netzwerk aus Echtzeitsystemen nicht konsistent
realisierbar ist, müssen mehrere Entwicklungsstadien erneut durchlaufen werden. Dies verzögert zum
einen die Lieferzeit des Fahrzeuges und führt zum anderen dazu, dass zusätzliche Kosten in einem Projekt
entstehen, das zu diesem Zeitpunkt eigentlich bereits fast vollendet sein sollte.

In dieser Arbeit wird ein Ansatz vorgestellt, mit dem die Konsistenz und Realisierbarkeit der Anforde-
rungen, die an die Echtzeitsysteme gestellt werden, bereits am Ende der Planungsphase veriûziert werden
können. Unser Ansatz unterstützt in der Speziûkation ebendieser Anforderungen, indem die Integrier-
barkeit des Systems bei der Planung und Entwicklung bereits überprü� werden kann. Basierend auf den
gegebenen Echtzeitanforderungen können zuverlässige Aussagen über die Integrität des fertigen Systems
getroòen werden können.
Das vorgestellte Verfahren ermöglicht die automatisierte Veriûkation eines modellierten Netzwerks

von Echtzeitsystemen, um Informationen über die Konsistenz von Echtzeitanforderungen schon in der
Planungsphase zu erlangen. Falls die Veriûkation aufzeigt, dass die Anforderungen inkonsistent sind, so
werden Informationen ausgegeben, die bei der Weiterentwicklung zu einem konsistenten System unter-
stützen.
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Abstract

Over the course of the recent decades, embedded systems have become so prevalent that they now con-
stitute the core of practically every electrical device manufactured. A special type of embedded systems
are real-time systems, which are designed to be predictable and reliable. _ese real-time systems are com-
monly used in a lot of safety-critical systems and it is of utmost importance to guarantee that they work as
expected.

In the automotive domain, these real-time systems are used to implement numerous functions including
assistive systems and x-by-wire architectures. Modern cars are composed not of one or two real-time
systems, but rather of a network consisting of hundreds of these systems. It is typical for a function to be
distributed among multiple devices, creating a complex system full of interdependencies.

Since these systems are safety-critical and theirmalfunction could lead to loss of human life, very intricate
testing is done before the main manufacturing stage is entered. When the testing results indicate that there
is no way to realize the network of automotive so�ware systems consistently, several development stages
need to be repeated. _is delays the ûnal delivery and requires additional resources to be spent on a project
which was supposed to be almost ûnished.

In this thesis we propose an approach to verify the consistency of requirements imposed on real-time
systems earlier in the process, at the end of the planning stage. Our approach assists in the speciûcation of
requirements and helps during the development of automotive so�ware systems by verifying the feasibility
of these systems. Based on the given real-time requirements, reliable assertions can be made regarding the
integrity of the ûnal system.

_epresentedmethod allows for the automated veriûcation of amodelednetworkof automotive so�ware
systems to gain information on the consistency of the requirements using data already available at the end
of the planning stage in the process. Should the result of the veriûcation indicate inconsistent requirements,
detailed information is output to assist in the development of a consistent system.
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1 Introduction
1.1 Motivation
More than two decades ago, the use of embedded systems was already commonplace in practically every
product involving electronics. _is includes everything from consumer-grade entertainment equipment
like televisions, radios and phones up to critically important systems like aircra� autopilots, numerous
life-critical medical devices as well as several so�ware-based assistance systems inside of cars[25].
Especially for these safety-critical systems, the discipline of real-time computing has emerged, which

aims to create fully predictable so�ware systems, both in regards to timely execution as well as correct
behavior[48]. Research on the usage of digital computing in environments where human life depends on
it dates back to even before 1970, as the NASA already successfully used digital computers for it’s Apollo
missions to the moon[32]. Creating dependable embedded systems requires a lot of considerations and
restrictions and their development follows strict guidelines. _e vast importance of ensuring the reliability
of these systems has been highlighted o�en, although assessment of the risks involved has shown to be
rather problematic[14].

Starting in 1976, the automotive industry started introducing more and more digital systems as well as
accompanying so�ware into their cars[40]. Even û�een years ago, cars already had up to 80 embedded
controllers that all needed to be properly developed and tested[12]. _e heterogeneous, largely supplier-
based nature of automotive development processes has proven to be a challenging issue, as so�ware and
hardware from multiple sources needs to be integrated into a ûnal, working product. Automotive systems,
consisting of a large number of communicating Electronic Control Units (ECUs), are required to handle
an ever increasing number of complex tasks and also need to fulûll a multitude of speciûc requirements
related to safety and reliability[40].

In an attempt to create a common base for the development of these systems, the Automotive Open Sys-
tem Architecture (AUTOSAR) was founded as a development partnership and published its ûrst major set
of speciûcations in 2006. _e goal of this partnership is to provide an open industry standard to narrow the
gap between car manufacturers and individual suppliers[37]. But even with these common standards, the
domain of automotive systems engineering still provides many unsolved challenges, especially in regards
to real-time system development[13].
Following the AUTOSAR approach, the development process of automotive so�ware systems is now

largely function-oriented. _is means that the development of so�ware and the actual hardware it is de-
ployed on is decoupled, allowing for great �exibility in regards to the actual conûguration of the ûnal
system[20]. But this also introduces another problem domain, as such a function might behave diòerently
when split among multiple ECUs in comparison to when it is being executed on a single one. Since dealing
with these distributed functions, most failures of safety-critical systems can be traced back to problems in
the interaction between the subsystems, not to failures of individual units[23].
As a result, there are even stricter and more complex restrictions in place for distributed functions as

well as systems composed of a multitude of these. Dealing with requirements in the automotive domain
has become a discipline in itself and the speciûcation of feasible requirements for larger project o�en takes
months and requires multiple iterations[11]. As a major problem domain of requirements in automotive
so�ware systems is timing, the AUTOSAR standard has been extended by the AUTOSAR Timing Exten-
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Figure 1.1: Evolution of Automotive So�ware Systems over Time1

sions (TIMEX) in an eòort to create a common standard for their speciûcation and characterization. _is
standard has been developed by bringing together results from multiple research projects, notably the
ITEA 2 project TIMMO[49] and the doctoral thesis of Oliver Scheickl[45].

_e topic of timing constraints in automotive so�ware systems, especially distributed systems, has been
a ûeld of extensive research in recent years and still continues to be. Analyzing and simulating the behavior
of a single real-time system is not trivial, but has been reliably accomplished decades ago. Characteristics
of real-time systems to account for when doing so include task conûguration and scheduling behavior,
consideration of both internal as well as external interrupts and the reliability real-time clock itself. Even
considering a processor withmultiple cores and parallel execution, it is possible to ensure that the deployed
so�ware will perform reliably under all considered circumstances[15].
Considering a network of real-time systems introduces a whole new layer of complexity, resulting in a

more complex simulation and analysis. For each new system introduced into the network an additional
real-time clock needs to be considered, which might not run synchronous to that of the other systems
in the network[57]. _ere exist various approaches to develop and test these inter-connected systems
and generally, the analysis of distributed real-time systems inside certain bounds can also lead to reliable
results[17]. But the thorough analysis that is necessary for these results requires a large amount of data
about the system, requiring both the system development as well as its implementation and conûguration
to be already ûnished when starting the tests.
As each function is only tested on its own by the supplier, the behavior and timing in�uences of inte-

grating a multitude of functions from various suppliers into a combined system is o�en very complex[45].
When also considering additional timing constraints for the diòerent functions, a reliable simulation of the
actual behavior and checks on whether these requirements are fulûlled can only be done very late in the
process[22]. At this point, the results might indicate that with the current system composed of ECUs and
the diòerent functions, the timing constraints cannot be fulûlled. Since detecting these inconsistencies this
late in the process requires major changes to the system as a whole, they introduce a lot of additional work

1based on the ûgure about the three phases of automotive so�ware system development in [45]
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1 Introduction

and might delay a project substantially, severely increasing the cost[56]. In this thesis we will propose an
approach to detect these inconsistencies earlier in the process, requiring only a small subset of information
about the ûnal system to verify whether fulûlling the constraints is possible.

1.2 Goals
Our ûrst goal is the detection of inconsistencies in speciûed real-time requirements early in the process.
In order to do that, we need to determine which inconsistencies can be detected in any set of speciûed
real-time requirements and which data is required to do so. _e more data we have, the more thorough
of an analysis can be performed, making the results more accurate and profound. But since most of the
data is only available later in the process, we are required to ûnd a trade-oò between the amount of data
required and the ûdelity of the analysis and veriûcation.

_e second goal is the automated detection of the inconsistencies that have been deemed identiûable.
We want to develop amethod that takes a set of requirements and a sample of basic parameters describing a
planned system as input and gives information on whether this input represents consistent, feasible system
or if there are requirements that contradict properties of the deûned system, making it inconsistent.

_is approach can then be used as one of the last steps in the planning process of distributed automo-
tive so�ware systems, in an attempt to prevent issues hindering the realization of the ûnal system in the
integration step near the end of the process. Considering a classic V-model-based process like shown in
ûgure 1.2, this approach would shi� the identiûcation of inconsistencies from the system integration step
to the low-level system design step of the process.
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Figure 1.2: Process model based on V-model publications[10, 58, 59]
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1.3 Approach
While basic inconsistencies in a set of requirements can be identiûed using simple arithmetic, most are
complex enough to require at least a rough model of the planned system. Using data available in the
planning stages of a process, we want to simulate the basic behavior of real-time systems in regard to timing
as accurately as possible to check whether a planned system conforms to a given set of requirements. For
this we require a time-aware model that is able to represent the discrete behavior of distributed real-time
systems, for which we chose a state-based approach. Early concepts of state-based modelling of real-time
systems dates back to 1990[2] and the automata concept which we will use in this thesis, that of Timed
Automata (TA), has been proposed only four years later[3].

Timed automata are an extension of regular ûnite automata and allow for the simulation of time-aware
behavior[6]. We use the tool UPPAAL2, developed by researchers of the Swedish Uppsala University as
well as the Aalborg University in Denmark, to allow for automated veriûcation of such automata. _e
model-checking itself is done in UPPAAL by querying a single automaton or a system of multiple timed au-
tomata using a subset of TimedComputation Tree Logic (TCTL), a time-aware extension of CTL originally
introduced in 1990[1].

_e data we need for this veriûcation is comprised of set of real-time requirements and a system plan,
consisting of estimates for the task execution time bounds and a distribution of the tasks on ECUs as well
as basic scheduling parameters. Apart from the speciûed requirements, each parameter can be variable
and as such, it shall be possible to test a multitude of scenarios with only slight changes. As a result we
want to obtain sound information about which, if any, requirements are not feasible as well as additional
information on the counter-example encountered by the model-checker in case of a violated requirement.

Since we are using UPPAAL, the veriûcation itself can be achieved in an automated manner, given a
model and the relevant queries. To also allow for the automation of the formalization, we show how to
map requirements given in the Timing Augmented Description Language 2 (TADL2) to our formalization,
such that queries can be automatically generated from TADL2 speciûcations. TADL2 is a result of the ITEA
3 project TIMMO-2-USE and provides a way to denote real-time requirements in a textual format that can
be mapped to AUTOSAR TIMEX, such that this approach can be integrated into the work�ow current
processes utilizing the AUTOSAR speciûcation[4, 9].

1.4 Related Work
In the development of real-time systems, especially in safety-critical environments, model-checking is a
common practice[1, 41, 47]. [1] primed the development of automata-based modelling of real-time sys-
tems[2] and timed automata[3]. Over the years several approaches have been developed using timed
automata to model-check real-time systems.

Several papers deal with the aspect of schedulability, attempting to determine whether a system can
be scheduled using a dynamic scheduling strategy and a set of scheduling parameters. _e paper ‘Timed
Automata as Task Models for Event-Driven Systems’[38] proposes an approach to model real-time, task-
based systems using timed automata. _ey perform schedulability analysis on real-time systems based
on the Earliest Deadline First (EDF) approach and use UPPAAL for a case study showcasing automated
veriûcation.
2available under http://uppaal.org/
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1 Introduction

Another example of schedulability analysis can be found in [19], where an extension of timed automata
called task automata is presented. _ese automata allow the modelling of tasks in so�ware systems with
execution time bounds and basic scheduling parameters as special states._emain goal of this researchwas
to perform schedulability analysis not only of tasks with periodic triggering but also sporadic activation,
supporting the extension by additional activation patterns. Decidability andundecidability of those systems
as well as possible issues regarding schedulability are detailed. Automatedmodel-checking was not covered
for this new class of automata and at this time, there does not exist a tool at the time to do so, unfortunately
making these not applicable for our approach.

‘Formal Analysis and Testing of Real-Time Automotive Systems Using UPPAAL Tools’[29] approaches
the analysis and testing of automotive so�ware systems not only using the UPPAAL model checker, but
also using the experimental statistical model checker of UPPAAL. In this article, a method is outline to
apply methods of statistical model checking (SMC) to real-time systems, performing statistical evaluation
and comparison as well as hypothesis testing. A case study is performed on by modelling a turn indication
system using a network of timed automata and the veriûcation of various properties including functional
and timing properties using regular model checking as well as SMC. _is approach requires very detailed
modelling of real-time systems and is mostly applicable at late stages of system development.
Dissertations about model-based development of automotive so�ware systems can be found in [31, 60].

_e thesis in [60] proposes a model-based test framework based on MATLAB, Simulink and State�ow
calledMiLEST and [31] proposes the COLA automotive approach of model-based development based on a
newly createdmodelling language. Both theses include numerous case studies to showcase the development
work�ow using the respectively proposed approach.

Outside of model-checking and model-based development we also ûnd research on the analysis of
real-time systems as well as automotive so�ware systems. An approach to the automated veriûcation of
real-time communicating systems using constraint-solving instead of model-checking is detailed in [21].
_e paper in [57] presents an analysis technique for distributed real-time systems considering task-based
systems and scheduling.
Another related work is [43], using formal and statistical analysis to determine schedule synthesis of

time-triggered automotive communication buses. _e analysis performed relates to timing in distributed
architectures and the predictability of network communication in distributed automotive so�ware sys-
tems. Similar is [27], utilizing discrete event simulation and network calculus to model and verify in-car
communication for time-critical applications in the automotive domain.

_e user documentation of Symtavision’s tool ‘Symbolic Timing Analysis for Systems’ (SymTA/S) also
covers the theory on which the tool is based[52]. SymTA/S can be used to perform statistical analysis on
distributed real-time systems and amore in-depth comparison of our approach to that of SymTA/S is found
later in section 6.2.

_e papers in [10] and [11] provide research on requirements engineering for large automotive so�ware
systems, with [10] using the EAST-ADL requirements speciûcation, which can also be mapped to AU-
TOSAR. Both reference the V-Model XT and detail a development process similar to the one assumed in
this thesis.
Work regarding timing in automotive so�ware systems including a timing model can be found in [22,

45], both of which are related to the speciûcations and concepts that are part of AUTOSAR TIMEX and
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TADL2 as well[4, 9]. Being part of the TIMMO project, [50] proposes a design framework using these
concepts to develop automotive systems with timing constraints. _ese works were used as references
throughout this thesis as a foundation for timing in automotive real-time systems.

1.5 Structure of this _esis
A�er the introduction in chapter 1, chapter 2 will introduce timed automata, TCTL and TADL2, which
will be used throughout this thesis.

In the course of chapter 3 we will present an approach to the formalization of concepts in real-time
systems and automotive so�ware developments. We start by introducing events, event chains and functions
in section 3.1, detail the formalization of actual so�ware systems in section 3.2 and declare the real-time
requirements covered in this thesis in section 3.3. _e detection of some ûrst inconsistencies in a set of
real-time requirements using simple arithmetic operations and without any system model is explained in
section 3.3.6.
Based on the formalization done in section 3.2, chapter 4 describes how to model processing environ-

ments using timed automata. In section 4.1 we explain necessary preparations and assumptions made in
the model-building process. Section 4.2 contains details on how to create a model of timed automata from
a formalized processing environment and in section 4.3 we implement this model using UPPAAL.

Using this model as a foundation, we show how the real-time requirements from section 3.3 can be
transferred to TCTL queries for veriûcation in chapter 5. _is chapter shows how to verify requirements
using only TCTL queries and the modeled system in section 5.1, proposes additional automata for state-
based veriûcation in section 5.2 and details how to resolve detected inconsistencies using the acquired
results in section 5.4.

_is work�ow is applied to an example of a distributed brake-by-wire function in chapter 6, specifying
a distributed function in section 6.1 and doing a case study starting in section 6.1.1, using to proposed
approach to proceed from an initially assumed, inconsistent system plan to a realizable system distribu-
tion in multiple iterations. We will compare our approach to using SymTA/S on the same example in
section 6.2, showing equivalences in achieved results and restrictions of applying a test-based approach in
the conceptional stage.

_e conclusion in chapter 7 consists of a summary and discussion of the developed method as well as
proposals for additions to the model and future research in this ûeld. Additional resources can be found in
the appendix, including the bibliography and a list of symbols. Appendix A starting at page VII contains
referenced material and Appendix B starting at page XIV includes complete code listings and UPPAAL
templates.
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Before starting with our approach to formalization, we will introduce the basics of timed automata,
the veriûcation language TCTL as well as the textual description language TADL2 that allows to denote
timing and timing requirements in automotive so�ware engineering._e introductory deûnitions ofTimed
Automata to the most part follow those detailed in [6], incorporating the more basic deûnitions from [3]
and also introducing concepts from [8].

2.1 Timed Automata
Originally proposed by R. Alur and D. L. Dill[2, 3], Timed Automata are an extension of the model of
ûnite automata, designed to incorporate real-time properties using automata-internal clock simulation
and timed guards dependent on these. A method to automatically verify Timed Automata was introduced
by researchers from the SwedishUppsala University[21], priming the development of a tool calledUPPAAL,
which has since been vastly extended.

Timed automata extend regular ûnite automata by clocks and since these clock are a fundamental part of
the deûnitions in this chapter, we will start by introducing clocks themselves as well as possible operations
on them.

Deûnition 2.1 (Clocks in Timed Automata). Let 𝒞 be a ûnite set of variables called clocks.
A clock valuation over𝒞 is amapping 𝑣 : 𝒞 ↦→R

+
0 which assigns to each clock a time value. Let 𝑑 ∈R+

0 ,
the valuation 𝑣 + 𝑑 is deûned by (𝑣 + 𝑑)(𝑐) = 𝑣(𝑐) + 𝑑,∀𝑐 ∈ 𝒞.
For a 𝑟 ⊆ 𝒞, let [𝑟 ↦→ 0]𝑣 denote the clock assignment that maps all clocks in 𝑟 to 0 and conforms to

𝑣 for all other clocks in 𝒞 ∖ 𝑟 .
A clock constraint is a conjunctive formula of atomic constraints, either of the form 𝑥 ◁▷ 𝑛 or 𝑥−𝑦 ◁▷ 𝑛

for 𝑥,𝑦 ∈ 𝒞,𝑛 ∈N0, ◁▷ ∈ {<,≤,=,≥,>}. We will use ℬ(𝒞) to denote the set of clock constraints, ranged
over by 𝑔 . For veriûcation purposes, we also introduce the set ℬ′(𝒞), the downwards closed set of clock
constraints, with ◁▷ ∈ {<,≤}.

Deûnition 2.2 (Timed Automaton). Let Σ be a a ûnite alphabet of actions.
A timed automaton𝒜 is a tuple ⟨𝑁,𝑙0,𝐸, 𝐼⟩ where

• 𝑁 is a ûnite set of locations,
• 𝑙0 ∈𝑁 is the initial location,
• 𝐸 ⊆𝑁 ×ℬ(𝒞)× (Σ∪ {𝜖})× 2𝒞 ×𝑁 is the set of edges, and
• 𝐼 :𝑁 ↦→ ℬ′(𝒞) assigns invariants to locations.

We will write 𝑙
𝑔,𝑎,𝑟−−−−→ 𝑙′ when ⟨𝑙,𝑔,𝑎, 𝑟, 𝑙′⟩ ∈ 𝐸. Extending the notion of actions to 𝑎 ∈ (Σ∪ {𝜖}), we

will allow empty actions. When a transition does not require input from the ûnite alphabet Σ, we will
abbreviate ⟨𝑙,𝑔,𝜖, 𝑟, 𝑙′⟩ ∈ 𝐸 as ⟨𝑙,𝑔, 𝑟, 𝑙′⟩ ∈ 𝐸 and denote transitions using 𝑙

𝑔,𝑟−−→ 𝑙′ .

We consider a pair (𝑡,𝑎) with an action 𝑎 and a point in time 𝑡 ∈R+ a timed action taken by a timed
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automaton𝒜. _e time-stamp 𝑡 is measured from the beginning of𝒜’s start.
A timed trace is a possibly inûnite, sequence of timed actions 𝜆 = (𝑡1, 𝑎1)(𝑡2, 𝑎2) . . . (𝑡𝑖 , 𝑎𝑖) . . . where

the time 𝑡 is weak monotonically increasing for all 𝑖 ≥ 1, so that 𝑡𝑖 ≤ 𝑡𝑖+1 holds.

Invariants are restricted to the downwards closed set of clock constraints since this is a requirement for
the veriûcation of the system.

Deûnition 2.3 (Operational Semantics of a Timed Automaton). _e semantics of a timed automaton
is deûned as a timed transition system where states are pairs ⟨𝑙,𝑣⟩ and transitions are deûned by the
following rules:

• ⟨𝑙,𝑣⟩ 𝑑−→ ⟨𝑙,𝑣 + 𝑑⟩ if 𝑣 ∈ 𝐼(𝑙) for any 𝑑 ∈R+

• ⟨𝑙,𝑣⟩ 𝑎−→ ⟨𝑙′ ,𝑣′⟩ if 𝑙 𝑔,𝑎,𝑟−−−−→ 𝑙′ ,𝑣 ∈ 𝑔,𝑣′ = [𝑟 ↦→ 0]𝑣 and 𝑣′ ∈ 𝐼(𝑙′)

To indicate a transition to another location based on both an action 𝑎 and a delay 𝑑 we will use the
abbreviated notation ⟨𝑙,𝑣⟩ 𝑎,𝑑−−→ ⟨𝑙′ ,𝑣 + 𝑑⟩. Further, we will allow silent transitions, where 𝑎 is the empty
word 𝜖, as well as zero-delay transitions, where 𝑑 is 0, so that transitions that require neither a delay nor
any input are possible; these will use the notation ⟨𝑙,𝑣⟩ 0−→ ⟨𝑙′ ,𝑣⟩, silent transitions will be denoted like
this with a 𝑑 > 0.
A run of a timed automaton 𝒜 = ⟨𝑁,𝑙0,𝐸, 𝐼⟩ with initial state ⟨𝑙0,𝑣0⟩ over a timed trace 𝜆 =

(𝑡1, 𝑎1)(𝑡2, 𝑎2)(𝑡3, 𝑎3) . . . is a sequence of transitions satisfying the condition 𝑡𝑖 = 𝑡𝑖−1 + 𝑑𝑖 for all 𝑖 ≥ 1:

⟨𝑙0,𝑣0⟩
𝑎1,𝑑1−−−−→ ⟨𝑙1,𝑣1⟩

𝑎2,𝑑2−−−−→ ⟨𝑙2,𝑣2⟩
𝑎3,𝑑3−−−−→ ⟨𝑙3,𝑣3⟩ · · ·

l0
x ≤ 0

l1
x ≤ 10

l2

l3

a
y B 0

b

xB 0

5 ≤ x ≤ 10

y ≤ 5
xB 0

Figure 2.1: Simple timed automaton with four locations

In ûgure 2.1 we see an example automaton with the locations 𝑙0, . . . , 𝑙3, the clocks 𝑥,𝑦 and the alphabet
{𝑎,𝑏}. It initially starts in location 𝑙0 with both clocks set to 0 and since 𝐼(𝑙0) = 𝑥 ≤ 0, the location must be
le� immediately, without any time advancing – since the only outgoing edge leads to 𝑙1, the automaton
must instantly enter this location a�er entering 𝑙0. When in 𝑙0, time may pass until the clock 𝑥 reaches a
value of 10; if it is between 5 and 10, the automaton may enter 𝑙3, a location with no outgoing edges, causing
a deadlock. Alternatively, when an 𝑎 is given as input, the automatonmay transition to location 𝑙2, resetting
the value of clock 𝑦 in the process. Should the conditions of both outgoing edges from 𝑙1 be true at the
same time, the automaton chooses an edge non-deterministically, as known from non-deterministic ûnite
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state automata. While in 𝑙2 and 𝑦 is still less than 5, the automaton can traverse a looped edge resetting the
clock value of 𝑥 without changing the location. Should it receive a 𝑏 as input, the value 𝑥 is reset as well
and the automaton changes back to the initial location 𝑙0, although a�er an iteration the clock value of 𝑦
might now be larger than 0.
An example of a valid, ûnite run of this automaton would be:

⟨𝑙0,
(︁
0
0

)︁
⟩ 𝜖,0−−→ ⟨𝑙1,

(︁
0
0

)︁
⟩ 𝑎,7−−→ ⟨𝑙2,

(︁
7
0

)︁
⟩ 𝜖,3−−→ ⟨𝑙2,

(︁
0
3

)︁
⟩ 𝑏,2−−→ ⟨𝑙0,

(︁
0
5

)︁
⟩ 𝜖,0−−→ ⟨𝑙1,

(︁
0
5

)︁
⟩ 𝜖,10−−−→ ⟨𝑙3,

(︁
10
15

)︁
⟩

2.1.1 Timed Automata for Concurrent Systems
Since each timed automaton can only have one active state at a time, modelling concurrent systems using
a single automaton would require a very complicated automaton. A more reasonable approach is to use a
network of multiple timed automata and simulate their parallel execution, which is what is also done in
UPPAAL. Deûnitions and techniques related to this topic will be covered in this subsection.

Deûnition 2.4 (ANetwork of TimedAutomata). For a set of timed automata𝐴1, . . . ,𝐴𝑛 called processes,
let the parallel composition 𝐴1 | · · · | 𝐴𝑛, called a network of timed automata, be a single system deûned
by the parallel composition operator of the Calculus of Communicating Systems (CCS); for an in-depth
explanation ofCCS and this parallel composition please refer to [36]. Broadcast communication between
processes in such a network is accomplished by utilizing broadcast channels, which require extending
the alphabet Σ by the following:

• input actions denoted using 𝑎?,
• output actions labelled as 𝑎!, and
• internal actions being represented distinctly using 𝜂

Asynchronous communication is achieved using variables shared between two or more processes.

Deûnition 2.5 (Operational Semantics of a Network of Timed Automata). Since the network of timed
automata is just a parallel composition of timed automata, we can give a similar deûnition of operational
semantics in terms of transition systems.

Let ⟨𝑙,𝑣⟩ be the state of a network, where 𝑙 is a vector of current locations in the network, one per
process, and 𝑣 is the clock assignment remembering the values of the clocks in the system. Let 𝑙𝑖 be the
𝑖th element of a location vector 𝑙 and let 𝑙

[︁
𝑙′𝑖
⧸︁
𝑙𝑖
]︁
stand for the vector 𝑙 with 𝑙𝑖 being substituted with 𝑙′𝑖 .

_en, delay and action transitions can simply be deûned as the following rules:

• ⟨𝑙,𝑣⟩ 𝑑−→ ⟨𝑙,𝑣 + 𝑑⟩ if 𝑣 ∈ 𝐼(𝑙) and (𝑣 + 𝑑) ∈ 𝐼(𝑙) for any 𝑑 ∈R+, where 𝐼(𝑙) =
⋀︀
𝑖 𝐼(𝑙𝑖)

• ⟨𝑙,𝑣⟩ 𝜂−→
⟨
𝑙
[︁
𝑙′𝑖
⧸︁
𝑙𝑖
]︁
,𝑣′

⟩
if 𝑙𝑖

𝑔,𝜂,𝑟−−−−→ 𝑙′𝑖 ,𝑣 ∈ 𝑔,𝑣′ = [𝑟 ↦→ 0]𝑣 and 𝑣′ ∈ 𝐼
(︁
𝑙
[︁
𝑙′𝑖
⧸︁
𝑙𝑖
]︁)︁

Deûnition 2.6 (Shared Variables and Broadcast Channels). Considering clocks to simply be a variable
of a speciûc type, we can introduce shared variables and arrays as known from traditional programming
languages, represented in UPPAAL using a C-like syntax. To include shared integer variables, we need
to deûne synchronized transitions with special regard to symmetry of input and output actions.
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Since we are only using broadcast channels, that allow the emitter of a broadcast – the edge with
the output action – to transition regardless of how many, if any, recipients there are, we introduce the
following rules to our transition system:

• ⟨𝑙,𝑣⟩ 𝜂−→
⟨
𝑙
[︁
𝑙′𝑖
⧸︁
𝑙𝑖
]︁
,𝑣′

⟩
if there exists an 𝑖 such that 𝑙𝑖

𝑔𝑖 ,𝑎!,𝑟𝑖−−−−−→ 𝑙′𝑖 and 𝑣 ∈ 𝑔𝑖
• ⟨𝑙,𝑣⟩ 𝜂−→

⟨
𝑙
[︁
𝑙′𝑖
⧸︁
𝑙𝑖
]︁[︁
𝑙′𝑗
⧸︁
𝑙𝑗
]︁
,𝑣′

⟩
if there exists an 𝑗 , 𝑖 such that

1. 𝑙𝑖
𝑔𝑖 ,𝑎!,𝑟𝑖−−−−−→ 𝑙′𝑖 and 𝑣 ∈ 𝑔𝑖 ,

2. 𝑙𝑗
𝑔𝑗 ,𝑎?,𝑟𝑗−−−−−−→ 𝑙′𝑗 and 𝑣 ∈ 𝑔𝑗 , and

3. 𝑣′ =
[︁
𝑟𝑖 ↦→ 0

]︁ (︁[︁
𝑟𝑗 ↦→ 0

]︁
𝑣
)︁
and 𝑣′ ∈ 𝐼

(︁
𝑙
[︁
𝑙′𝑖
⧸︁
𝑙𝑖
]︁[︁
𝑙′𝑗
⧸︁
𝑙𝑗
]︁)︁

_e notion can be extended to an arbitrary amount of broadcast receivers. Each receiver must take
the input transition when a broadcast is sent on the corresponding broadcast channel as long as the
transition does violate neither transition guards nor invariants.

Deûnition 2.7 (Committed Locations in Timed Automata). We allow timed automata to have commit-
ted locations, which are locations in which no timemay pass such that directly a�er entering the location
the automaton is required to continue on an outgoing edge. In a network of timed automata, processes
in committed locations can only be interleaved with other processes in a committed location.

Let each process 𝐴𝑖 in a network have a subset𝑁𝐶
𝑖 ⊆𝑁𝑖 of committed locations. On outgoing edges

of locations in𝑁𝐶
𝑖 , no clock constraints may be used. Considering committed locations, the following

transition rules for a network of timed automatamust be added,with→𝑐 denoting the transition relation
for a network with committed locations and→ denoting the transition relation for the same network
ignoring committed locations:

• ⟨𝑙,𝑣⟩ 𝑑−→𝑐 ⟨𝑙,𝑣 + 𝑑⟩ if ⟨𝑙,𝑣⟩ 𝑑−→ ⟨𝑙,𝑣 + 𝑑⟩ and
⋃︁
𝑘

(︁
{𝑙𝑘} ∩𝑁𝐶

𝑘

)︁
= ∅

• ⟨𝑙,𝑣⟩ 𝜂−→𝑐

⟨
𝑙
[︁
𝑙′𝑖
⧸︁
𝑙𝑖
]︁
,𝑣′

⟩
if

1. ⟨𝑙,𝑣⟩ 𝜂−→
⟨
𝑙
[︁
𝑙′𝑖
⧸︁
𝑙𝑖
]︁
,𝑣′

⟩
, and

2. either 𝑙𝑖 ∈𝑁𝐶
𝑖 or

⋃︁
𝑘

(︁
{𝑙𝑘} ∩𝑁𝐶

𝑘

)︁
= ∅

• ⟨𝑙,𝑣⟩ 𝜂−→𝑐

⟨
𝑙
[︁
𝑙′𝑖
⧸︁
𝑙𝑖
]︁[︁
𝑙′𝑗
⧸︁
𝑙𝑗
]︁
,𝑣′

⟩
if

1. ⟨𝑙,𝑣⟩ 𝜂−→
⟨
𝑙
[︁
𝑙′𝑖
⧸︁
𝑙𝑖
]︁[︁
𝑙′𝑗
⧸︁
𝑙𝑗
]︁
,𝑣′

⟩
, and

2. either 𝑙𝑖 ∈𝑁𝐶
𝑖 , 𝑙𝑗 ∈𝑁𝐶

𝑗 or
⋃︁
𝑘

(︁
{𝑙𝑘} ∩𝑁𝐶

𝑘

)︁
= ∅

For a single automaton a committed location is equivalent to adding a clock 𝑥 to the location, having all
incoming edges reset 𝑥 to 0 and adding the invariant 𝑥 ≤ 0 to the location; refer to ûgure 2.1, where this
was already used in the location 𝑙0.
Figure 2.2 shows a network of timed automata, one automaton being an extension of the one shown

in ûgure 2.1, with the initial location marked as committed and an input transition out of 𝑙3, receiving
messages on broadcast channel c. _e other automaton in the network has only two locations 𝑙′0 and 𝑙

′
1 and
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l0

l1
x ≤ 10

l2

l3

a
y B 0

b

xB 0

5 ≤ x ≤ 10

c?

y ≤ 5
xB 0

l′0
z ≤ 50

l′1

z − x > 20 c!
zB 0

Figure 2.2: Network composed of two timed automata

introduces the additional clock 𝑧 into the system. From the initial location 𝑙′0 there is only one transition,
which can only be taken when 𝑧−𝑥 > 20 holds true; note that this makes the clock 𝑥 used by both automata.
Having reached 𝑙′1, which is a committed location, the automaton sends an output action on broadcast
channel c and resets clock 𝑧; should the ûrst automaton be in location 𝑙3, it must take the transitionmarked
with c? leading to 𝑙2, since it receives the broadcast and must act upon it.

2.2 Timed Computation Tree Logic
We will introduce the Timed Computation Tree Logic (TCTL), an extension of the Computation Tree Logic
used to verify properties of ûnite automata ûrst speciûed in [1] – that paper is the base for the following
deûnition. Since UPPAAL implements only a subset of TCTL[6], we will limit the deûnition here to the
formulas supported in UPPAAL.

Deûnition 2.8 (Formulas of TCTL). Let 𝑃 be a set of atomic propositions, 𝑝 ∈ 𝑃 , 𝑐 ∈N and ◁▷ ∈ {<,≤
,=,≥,>}. _en each valid formula of TCTL is inductively deûned as follows:

𝜑B 𝑝 | false | 𝜑1 → 𝜑2 | ∃𝜑1 𝒰◁▷ 𝑐 𝜑2 | ∀𝜑1 𝒰◁▷ 𝑐 𝜑2

In TCTL, ∃𝜑1 𝒰◁▷ 𝑐 𝜑2 expresses that there exists a computation path and a time length bound by
◁▷ 𝑐 such that 𝜑2 holds when ◁▷ 𝑐 is fulûlled and 𝜑1 holds in all the intermediate states. Similarly,
∀𝜑1 𝒰◁▷ 𝑐 𝜑2 denotes the same property but instead requires it to hold for every possible computation
path. For 𝜑1 → 𝜑2, 𝜑1 implies 𝜑2 and thus 𝜑2 must hold when 𝜑1 is fulûlled. _e subset of TCTL
available for veriûcation in UPPAAL is listed in table 2.1.
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TCTL Formula UPPAAL Formula Explanation
∀�𝜑 A[] 𝜑 𝜑 holds invariantly and is thus true in all reachable states of the

network.
∀♦𝜑 A<> 𝜑 𝜑 holds always eventually and is thus true at the end of each

valid path.
∃�𝜑 E[] 𝜑 _ere exists at least one valid path for which 𝜑 is true in all

states.
∃♦𝜑 E<> 𝜑 _ere exists at least one valid path for which 𝜑 is true in the

end.
𝜓→ 𝜑 𝜓 imply 𝜑 When 𝜑 holds, this implies that 𝜓 must hold as well.

Table 2.1: Subset of TCTL queries implemented in UPPAAL

To ensure that ‘something bad never happens’ one needs to verify safety properties, such that for any
formula𝜑 that may never be true, the safety property ∀�¬𝜑must hold. A special kind of safety property is
deadlock-freeness, which, when veriûed, ensures that it is not possible for the system to reach a state from
which it cannot further progress – this can be veriûed in UPPAAL using the query A[] not deadlock .

∀�φ ∀♦φ ∃�φ ∃♦φ

Figure 2.3: Visualization of the four main TCTL formula/query types

We have visualized veriûcation paths for the ûrst four query types introduced in table 2.1 in ûgure 2.3
using a tree-like depiction of possible system states. Starting at the top, the possible system states branch
and the states where the corresponding query holds are marked bold red. If we assume 𝜑→ 𝜓 for any of
the shown queries, then 𝜓 would hold in at least all highlighted branches as well.

2.3 Timing Augmented Description Language (Version 2)
_e Timing Augmented Description Language 2 (TADL2) is a result of the ITEA 3 project TIMMO-2-
USE and an extension of the TADL developed as part of the original TIMMO project in ITEA 2[9]. It
provides a standardized way of denoting concepts of timing in automotive so�ware engineering as well
as corresponding requirements in a textual format. _e deûned concepts and constraints can be mapped
to that of AUTOSAR TIMEX and according to the AUTOSAR Timing Analysis document, ‘TADL2 base
concepts are quite equivalent to those of AUTOSAR TIMEX’ [4, p. 30]. We will use TADL2 in chapter 3
to provide a mapping between textual requirements and our developed formalization. Relevant snippets
of TADL2 declarations are included in section 3.1 and section 3.3, in this section we will only introduce
necessary basics of a TADL2 speciûcation that are shared between all other TADL2 declarations in this
thesis.

To work with timing relations in TADL2, we need to deûne a universal time base, which serves as a
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reference for the time base of systems and allows to diòerentiate between multiple, diòerently precise
systems. Since our approach is applicable in the planning stage of a process and we do not have any data
about diòerences in the precision of the systems, we will declare a fully-accurate, shared time base for all
systems. _e universal_time time base in listing 2.1 represents such a time base and will be considered
to be the universal time base for all TADL2 declarations in this thesis.

Dimension physical_time {
Units {

micros{factor 1.0 offset 0.0},
ms{factor 1000.0 offset 0.0 reference micros},

5 second{factor 1000000.0 offset 0.0 reference micros}
}

}

TimeBase universal_time {
10 dimension physical_time,

precisionFactor 0.1,
precisionUnit micros

}

Listing 2.1: TADL2 description of a universal, fully-accurate time base

In section 3.1 we cover the deûnition of events and event chains in TADL2. Section 3.3 shows how timing
constraints are represented in TADL2 and in chapter 6 we will show a full declaration of a distributed
function in TADL2, including real-time requirements. _is thesis only covers a small subset of the timing
constraints that can be described using TADL2; a full listing can be found in [9].
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In this chapter we will introduce concepts common in automotive so�ware engineering and propose a
formalization approach with regards to timing analysis. We will start with the conceptual basics of timing
in section 3.1, deûning events, event chains and functions. In section 3.2 we will deûne how to formalize
automotive systems as well as tasks and also explain relevant properties like scheduling. At the end of this
chapter in section 3.3, we introduce the real-time requirements that will be examined in this thesis, show
how they are expressed in TADL2 and how to transfer the deûnitions from our formalization to TADL2
and back.

3.1 Basics of Timing in Automotive So�ware Engineering
In order to deûne any real-time requirements, we need a common concept of timing in automotive systems.
For this sake we will introduce the concept of events in this section and deûne event chains as well as
functions in the timing context, allowing

3.1.1 Event
_e core of timing analysis in automotive so�ware engineering are events, they are a concept common
to the timing mode of AUTOSAR TIMEX and TIMMO-2-USE[4, 9]. Events allow to specify observable
actions in a so�ware system, for which relations might exist. A comparison of diòerent event models, and
a more in-depth look at the concept in general, can be found in [45].

Deûnition 3.1 (Event). We consider an event to be an observable entity in temporal context. Each event
𝑒 is distinctly identiûable and observable.

Deûnition 3.2 (Event Occurrence). We say that an event can occur at a point in time, which we will
then refer to as an occurrence of that event. Each event occurrence 𝑜 = (𝑒, 𝑡) is a tuple of an event 𝑒 and
a point in time 𝑡 ∈R+

0 .

Time

Events

𝑒2

𝑒1

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6

occurrence of 𝑒1 at 𝑡5
(𝑒1, 𝑡5)

Figure 3.1: Multiple occurrences of diòerent events

Figure 3.1 shows two sample events 𝑒1, 𝑒2 with various occurrences at the points in time 𝑡1 to 𝑡6. Note
that event occurrences are comparable both for the same event as well as distinct events. With regard to
ûgure 3.1, we can for example say that the occurrence of event 𝑒1 at 𝑡2 happened before that of 𝑒2 at 𝑡3 or
that at 𝑡5, the events 𝑒1 and 𝑒2 happened at the same time. To be able to properly refer to these relations,
we deûne a preorder for sets of event occurrences of multiple events and a total order for sets of event
occurrences of a single event.
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Deûnition 3.3 (Preorder over Event Occurrences). Let ≤𝑡 be a preorder over a set of event occurrences
(𝑒, 𝑡) where 𝑒 may be any event and 𝑡 ∈ R+ is a timestamp. Assuming any such set𝑂, the preorder ≤𝑡
exhibits the following properties:

• (𝑒𝑖 , 𝑡𝑛) ≤𝑡 (𝑒𝑗 , 𝑡𝑚) holds true when 𝑡𝑛 ≤ 𝑡𝑚 holds true for any (𝑒𝑖 , 𝑡𝑛), (𝑒𝑗 , 𝑡𝑚) ∈𝑂
• (𝑒, 𝑡) ≤𝑡 (𝑒, 𝑡) holds true for all (𝑒, 𝑡) ∈𝑂 (re�exivity)
• (𝑒𝑖 , 𝑡𝑛) ≤𝑡 (𝑒𝑗 , 𝑡𝑚) and (𝑒𝑗 , 𝑡𝑚) ≤𝑡 (𝑒𝑖 , 𝑡𝑛) then 𝑡𝑛 = 𝑡𝑚 for all (𝑒𝑖 , 𝑡𝑛), (𝑒𝑗 , 𝑡𝑚) ∈𝑂
• if (𝑒𝑖 , 𝑡𝑛) ≤𝑡 (𝑒𝑗 , 𝑡𝑚) and (𝑒𝑗 , 𝑡𝑚) ≤𝑡 (𝑒𝑘 , 𝑡𝑙) then (𝑒𝑖 , 𝑡𝑛) ≤𝑡 (𝑒𝑘 , 𝑡𝑙) follows
for all (𝑒𝑖 , 𝑡𝑛), (𝑒𝑗 , 𝑡𝑚), (𝑒𝑘 , 𝑡𝑙) ∈𝑂 (transitivity)

Deûnition 3.4 (Total Order over Event Occurrences). Let <𝑡 be a total order over a set of event occur-
rences (𝑒, 𝑡) where 𝑒 is one distinct event and 𝑡 ∈R+ is a timestamp. Assuming any such set𝑂, the total
order <𝑡 exhibits the following properties:

• (𝑒, 𝑡𝑛) <𝑡 (𝑒, 𝑡𝑚) holds true when 𝑡𝑛 < 𝑡𝑚 holds true for any (𝑒, 𝑡𝑛), (𝑒, 𝑡𝑚) ∈𝑂
• (𝑒, 𝑡) <𝑡 (𝑒, 𝑡) holds true for all (𝑒, 𝑡) ∈𝑂 (re�exivity)
• (𝑒, 𝑡𝑛) <𝑡 (𝑒, 𝑡𝑚) or (𝑒, 𝑡𝑚) <𝑡 (𝑒, 𝑡𝑛) holds for all (𝑒, 𝑡𝑛), (𝑒, 𝑡𝑚) ∈𝑂 (totality)
• if (𝑒, 𝑡𝑛) <𝑡 (𝑒, 𝑡𝑚) and (𝑒, 𝑡𝑚) <𝑡 (𝑒, 𝑡𝑛) then 𝑡𝑛 = 𝑡𝑚 and thus (𝑒, 𝑡𝑛) = (𝑒, 𝑡𝑚)

for all (𝑒, 𝑡𝑛), (𝑒, 𝑡𝑚) ∈𝑂 (antisymmetry)
• if (𝑒, 𝑡𝑛) <𝑡 (𝑒, 𝑡𝑚) and (𝑒, 𝑡𝑚) <𝑡 (𝑒, 𝑡𝑙) then (𝑒, 𝑡𝑛) <𝑡 (𝑒, 𝑡𝑙) follows
for all (𝑒, 𝑡𝑛), (𝑒, 𝑡𝑚), (𝑒, 𝑡𝑙) ∈𝑂 (transitivity)

• the inûmum is the element with the smallest timestamp such that inf𝑂B (𝑒, 𝑡𝑛) ∈𝑂
with 𝑡𝑛 ≤ 𝑡 for any 𝑡 in (𝑒, 𝑡) ∈𝑂

• the supremum is the element with the largest timestamp such that sup𝑂B (𝑒, 𝑡𝑛) ∈𝑂
with 𝑡𝑛 ≥ 𝑡 for any 𝑡 in (𝑒, 𝑡) ∈𝑂

Using these orders, we can say that in ûgure 3.1 the occurrences of 𝑒1 fulûll the relation (𝑒1, 𝑡2) <𝑡
(𝑒1, 𝑡4) <𝑡 (𝑒1, 𝑡5) and that for example (𝑒1, 𝑡2) ≤𝑡 (𝑒2, 𝑡3). Note that even in sets of occurrences of multiple
diòerent events, we can use the total order when only comparing occurrences of the same event.

In TADL2, events are deûned using the simple statement Event e {} , where e is the name or descrip-
tor of the event. _ese event deûnitions are the foundation of both event chains and real-time requirements
and in each following snippet, we will assume the referenced events to have already been declared using
this statement.

3.1.2 Event Chain
Event chains are a method to describe a course of events in the timing analysis of automotive so�ware
systems. _ey provide context and relation to the events, reacting to a stimulus event, following an event
path and ending with a response event.

Deûnition 3.5 (Event Chain). We consider an event chain to be a totally ordered set ec = (𝐸,𝑠, 𝑟)where

• 𝐸 is a ûnite set of at least two distinct events and
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• 𝑠 ∈ 𝐸 is the stimulus event, and
• 𝑟 ∈ 𝐸 is the response event.

Deûnition 3.6 (Total Order over Event Chains). Let ≤ec be the total order over event chains. Assuming
any event chain ec, the total order ≤ec exhibits the following properties:

• the stimulus 𝑠 is the ûrst element in the set 𝐸 such that 𝑠 ≤ec 𝑒 for all 𝑒 ∈ 𝐸
• the response 𝑟 is the last element in the set 𝐸 such that 𝑒 ≤ec 𝑟 for all 𝑒 ∈ 𝐸
• 𝑒 ≤ec 𝑒 holds true for all 𝑒 ∈ 𝐸 (re�exivity)
• 𝑒𝑎 ≤ec 𝑒𝑏 or 𝑒𝑏 ≤ec 𝑒𝑎 holds for all 𝑒𝑎, 𝑒𝑏 ∈ 𝐸 (totality)
• if 𝑒𝑎 ≤ec 𝑒𝑏 and 𝑒𝑏 ≤ec 𝑒𝑎 then 𝑒𝑎 = 𝑒𝑏 for all 𝑒𝑎, 𝑒𝑏 ∈ 𝐸 (antisimmetry)
• if 𝑒𝑎 ≤ec 𝑒𝑏 and 𝑒𝑏 ≤ec 𝑒𝑐 then 𝑒𝑎 ≤ec 𝑒𝑐 follows for all 𝑒𝑎, 𝑒𝑏, 𝑒𝑐 ∈ 𝐸 (transitivity)

When deûning event chains, we assume 𝐸 to be an ordered set of distinct events under the total order
≤ec, such that for each event chain ec = (𝐸,𝑠, 𝑟) with 𝐸 = {𝑒1, . . . , 𝑒𝑛} the relation 𝑒1 ≤ec . . . ≤ec 𝑒𝑛 holds
as well as 𝑠 = 𝑒1, 𝑟 = 𝑒𝑛. Since 𝑠 and 𝑟 are implicitly given by the order of 𝐸, we will not explicitly declare
them in the future and consider the deûnitions ec = (𝐸) and ec = (𝐸,𝑠, 𝑟) to be equivalent.

Each occurrence of a stimulus event triggers the corresponding event chain. To trace a path of events
through an event chain, we need an additional concept, describing a way from the occurrence of a stimulus
event to the occurrence of a response event.

Deûnition 3.7 (Flow through an Event Chain). Let ec = {𝑒1, . . . , 𝑒𝑛} be an event chain with 𝑒1 ≤ec . . . ≤ec

𝑒𝑛 and𝑂 a set of observed event occurrences. Each �ow through the event chain consists of 𝑛 elements
from (𝑒1, 𝑡1) to (𝑒𝑛, 𝑡𝑛) where 𝑡1 < . . . < 𝑡𝑛 denote points in time. A�er an occurrence of (𝑒1, 𝑡1) at any
point in time, the �ow of the event chain triggered by 𝑒1 at 𝑡1 is deûned recursively as the following:

ef𝑖(ec, 𝑡1)B ef𝑖−1(ec, 𝑡1)∪ (𝑒𝑖 , 𝑡𝑖) with (𝑒𝑖 , 𝑡𝑖)B inf
{︁
(𝑒𝑖 , 𝑡𝑗 ) ∈𝑂 : 𝑡𝑗 > 𝑡𝑖−1

}︁
for 𝑖 ∈ [2,𝑛]

When we denote the complete �ow of an event chain, from the occurrence to the stimulus up to
the occurrence of the response event, we will omit the parameter 𝑖. _is means that we will consider
ef(ec, 𝑡1) and ef𝑛(ec, 𝑡1) to be equivalent, for any occurrence of an event 𝑒 at a point in time 𝑡1.
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Extending ûgure 3.1 by an additional event 𝑒3, we can deûne the event chain ec = {𝑒1, 𝑒2, 𝑒3}. In ûgure 3.2
we can now see multiple occurrences of these events as well as three complete �ows through the event
chain ec:

ef(ec, 𝑡2)B {(𝑒1, 𝑡2), (𝑒2, 𝑡3), (𝑒3, 𝑡6)},
ef(ec, 𝑡3)B {(𝑒1, 𝑡3), (𝑒2, 𝑡5), (𝑒3, 𝑡8)},
ef(ec, 𝑡5)B {(𝑒1, 𝑡5), (𝑒2, 𝑡7), (𝑒3, 𝑡8)},
ef(ec, 𝑡9)B {(𝑒1, 𝑡9), (𝑒2, 𝑡12), (𝑒3, 𝑡13)},
ef(ec, 𝑡11)B {(𝑒1, 𝑡11), (𝑒2, 𝑡12), (𝑒3, 𝑡13)}

Time

Events

𝑒3

𝑒2

𝑒1

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11 𝑡12 𝑡13

Figure 3.2: Several �ows through ec = {𝑒1, 𝑒2, 𝑒3} given sample occurrences of 𝑒1, 𝑒2, 𝑒3

Since each occurrence in the �ow needs to happen a�er the previous one, an event chain might be
triggered or continued while multiple events happen at once, like at 𝑡5 or 𝑡10 in ûgure 3.2, but at most a
single event occurrence contributes to the �ow then. Every �ow of an event chain is unique and has a
distinct occurrence of a stimulus event, but may share other events in the chain with other �ows as seen
with ef(ec, 𝑡3) and ef(ec, 𝑡5) sharing the same response occurrence (𝑒3, 𝑡8). Note that each occurrence of a
stimulus event must start a �ow, but other events in the chain may happen in between, not being part of
any �ow; for example the occurrences of 𝑒3 at 𝑡9 and 𝑡10.

In TADL2, event chains always consist of exactly one stimulus event and one response event. _e event
chainmodel in TADL2 is hierarchical, allowing the additional deûnition of segments to deûne a path of two-
element event chains. Assuming we have already deûned the relevant events as per the previous subsection,
the deûnition of ec in TADL2 would look like shown in listing 3.1. Note that the hierarchical deûnition
requires each segment to have the response event of the previous segment as its stimulus, otherwise the
event chain deûnition would be invalid.

segA = EventChain {
stimulus = e1,
response = e2

}
5

segB = EventChain {
stimulus = e2,
response = e3

}
10

ec = EventChain {
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stimulus = e1,
response = e3,
segment = < segA, segB >

15 }

Listing 3.1: TADL2 model of the event chain ec = {𝑒1, 𝑒2, 𝑒3}

3.1.3 Function
Automotive so�ware systems are not developed by deûning and triggering events and event chains, but by
implementing previously planned functions. _e functions themselves usually describe what operations
need to be performed, which input data is required for these calculations and which data is output at the
end. It is then up to suppliers to implement these functions in a way that they exhibit the desired behavior.
In the context of timing analysis, we do not need to know what or how functions implement this behavior
and simply consider a function to be a high-level black-box concept.

Deûnition 3.8 (Function). Wewill consider a function 𝑓 = (start𝑓 ,finish𝑓 ) to be a special type of event
chain consisting only of the stimulus event start𝑓 and the response event finish𝑓 . _e start and ûnish
events of a function are in a 1:1–relationship, such that each start𝑓 must be followed by exactly one
finish𝑓 event and no finish𝑓 may occur outside of a response.
When deûning functions, we will consider the start and ûnish events to be explicitly given by the

function name, such that the simple deûnition of a function 𝑓 omitting the explicit events is equal to
the deûnition 𝑓 = (start𝑓 ,finish𝑓 ) where 𝑓 is the name of the function respectively.

Depending on the level of timing analysis performed, several diòerent parts of a function implementation
can be measured and examined. Figure 3.3 shows a sample of timing data that could be considered when
doing a thorough timing analysis. For the sake of this thesis and the requirements covered in section 3.3,
we will consider the 𝑓start to occur at the start of the function execution time and the 𝑓ûnish to be emitted
at the end of the execution time. Referencing ûgure 3.3, the diòerence between the start and ûnish event
of a function is equal to the gross execution time.
As functions are a more natural concept in describing the working of automotive so�ware systems than

event chains, we will from now on mostly deal with these. Since functions represent a special type of event
chain, we will introduce a way to deûne event chains from given functions.
We will commonly use visualization of event chains deûned from functions. An example for such an

event chain ec = {𝑓1, 𝑓2} is shown in ûgure 3.5. Several �ows through the function event chains 𝑓1, 𝑓2 as
well as through this combined event chain ec = {𝑓1, 𝑓2} are depicted in ûgure 3.4, the connection between
the two function event chains is highlighted separately.
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IPT initial pending time
CET core execution time
GET gross execution time
RT response time
DL deadline
DT delta time
ST slack time
PER period

Figure 3.3: Information in intricate timing analysis of functions1

Deûnition 3.9 (Deûning Event Chains from Functions). Considering an ordered set of implicitly de-
ûned functions 𝐹 = {𝑓1, . . . , 𝑓𝑛}, the event chain corresponding to this set is deûned as

ec =
(︂⋃︁
𝑓 ∈𝐹

start𝑓 ∪finish𝑓
)︂
=
(︁{︁

start𝑓1 ,finish𝑓1 , . . . ,start𝑓𝑛 ,finish𝑓𝑛
}︁)︁

In this event chain, the start event of the ûrst function is the stimulus and the ûnish event of the last
function is the response. As such, ec = ({𝑓1, . . . , 𝑓𝑛}) and ec =

(︁
{𝑓1, . . . , 𝑓𝑛},start𝑓1 ,finish𝑓2

)︁
are equiva-

lent.

Time

Events

finish𝑓2

start𝑓2

finish𝑓1

start𝑓1

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9

Figure 3.4: Flows through the event chain ec = {𝑓1, 𝑓2}

In TADL2, the deûnition of this event chain does not only require the deûnition of the event chains
representing 𝑓1 and 𝑓2, but also an additional chain to connect the response event of 𝑓1 with the start event
of 𝑓2. A full example can be found in listing 3.2, assuming the events corresponding to 𝑓1 and 𝑓2 are already

1based on the graphical explanation of function timing in [26]
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𝑓1 𝑓2

Stimulus start𝑓1 of ec

Response finish𝑓2 of ec

Figure 3.5: Visualization of the event chain ec = {𝑓1, 𝑓2}

deûned.

f1 = EventChain {
stimulus = f1_start,
response = f1_finish

}
5

f1_to_f2 = EventChain {
stimulus = f1_finish,
response = f2_start

}
10

f2 = EventChain {
stimulus = f2_start,
response = f2_finish

}
15

ec = EventChain {
stimulus = f1_start,
response = f2_finish,
segment = < f1, f1_to_f2, f2 >

20 }

Listing 3.2: Deûnition of the event chain ec = {𝑓1, 𝑓2} in TADL2

3.2 Properties of an Automotive So�ware System
_e previously introduced deûnitions are conceptional and not part of an automotive so�ware system. Any
functions that were planned must be implemented, and in this step several limitations of the underlying
system must be kept in mind; these concepts will be explained in this section.

Deûnition 3.10 (Processing Environment). We will consider a processing environment to be a tuple
pe = (𝑇 ,TG,TQ,c,Sch) where

• 𝑇 is a ûnite set of tasks,
• TG : 𝑇 ↦→R

+ is a function mapping each task in 𝑇 to a period of time,
• TQ is the processing environment’s task queue,
• c is the processing environment’s clock, and
• Sch is a scheduling function.
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Since we already introduced the concept of clocks in section 2.1 and are introducing another concept
with the same name in the context of processing environments, it is important to properly diòerentiate
between both; as such, clocks in the concept of processing environments are written in roman type, like c,
and clocks in terms of timed automata in italic type, like 𝑐.
A processing environment serves as a basic representation of an automotive so�ware system to run

functions on, implemented as tasks. We assume a processing environment to be able to handle exactly one
execution at a time.

3.2.1 Tasks
Tasks represent a realization of the function concept explained in section 3.1.3. We consider each task to
be an implementation of exactly one function.

Deûnition 3.11 (Task). We deûne a task as tuple 𝜏 = (𝑓 ,BCET,WCET,𝐴) where

• 𝑓 is a single function that is implemented by the task,
• BCET ∈R+ is the best-case execution time of the task,
• WCET ∈R+ is the worst-case execution time of the task with WCET ≥ BCET,
• 𝐴, the task’s scheduling attribute.

We will call any task 𝜏 = (𝑓 ,BCET,WCET,𝐴) an implementation of the function 𝑓 .

We diòer between the concept of a task, representing the implemented function on an automotive
so�ware system, and a task instance, which we consider to be an actual executable entity on a processing
environment.

Since tasks are implementations of functions, we can specify bounds for the execution time of their
corresponding task instances. In function context, the execution time of the task instance represents the
time between the start event and the ûnish event of the implemented function. We will call the upper
bound the worst-case execution time (WCET) and the lower bound the best-case execution time (BCET);
both are dependent on the implementation of the task as well as the underlying system and are ûxed values
given in the deûnition of the task. Due to this, we will consider tasks unique to a processing environment,
and each processing environment is required to use its own, distinct set of tasks.

_e scheduling attribute is used by the scheduling function Sch on the level of the process environment
to determine the next task to execute; examples for schedulers and relevant scheduling attributes are given
in section 3.2.4.

Unless otherwise noted, we will consider tasks to implement the functions deûned by the same index,
such that the tasks 𝜏1, . . . , 𝜏𝑛 implement the functions 𝑓1, . . . , 𝑓𝑛 respectively.

Deûnition 3.12 (Task Instance). We will consider a task instance to be a tuple 𝑖 = (𝜏,𝑠,et) where

• 𝜏 is the task of which 𝑖 is an instance,
• 𝑠 ∈R+

0 is the the start time of the task instance, and
• et ∈ [0,WCET𝜏 ] is the execution time of the task instance.
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Since each task instance is bound to exactly one task 𝜏 we say that the task executes the function
deûned by 𝑓𝜏 . As such, the start of the execution of a task instance triggers the event start𝑓 and the end
of its execution triggers ûnish𝑓 .

_e execution time of a task instance is the amount of time that a processing environment spends
executing this speciûc task instance. It is mainly determined by scheduling and will be covered in more
detail in section 3.2.4.

3.2.2 Clock
In the context of real-time systems like automotive so�ware systems, each system usually has its own clock
to keep track of time. _is concept is now formalized and applied to processing environments.

Deûnition 3.13 (Clock). We consider a clock c to be the timekeeper of a processing environment. For a
processing environment with a clock c, 𝑡c ∈R+

0 will deûne the system time.

Since each processing environment keeps track of its own local time, there might be diòerences in the
time between various processing environment, resulting in an oòset.

Deûnition 3.14 (Clock Oòset). We will call the diòerence between a clocks 𝑐1 and another clock 𝑐2 the
clock oòset between the clocks 𝑐1 and 𝑐2, deûned as co(c1,c2) = 𝑡c2− 𝑡c1 . For any c1,c2 the oòset is sym-
metrical, that is co(c1,c2) = −co(c2,c1) holds. Additionally, if c1 = c2 then co(c1,c2) = −co(c2,c1) = 0.

Since each processing environment has exactly one clock, we will also use co(pe1,pe2) to denote the
clock oòset between any two processing environments pe1,pe2, which is equivalent to co(cpe1 ,cpe2).

Deûnition 3.15 (Reference System). For any set PE of processing environments, a reference system is
deûned as a processing environment pe𝑖 such that co(pe𝑖 ,pe) ≥ 0 holds true for all pe ∈ PE.

As such, a reference system in a set of processing environments is a processing environment for which
all clock oòsets are non-negative. It will be used as a more accessible way of denoting clock oòsets for larger
systems, since all clock oòsets can be declared starting at 0 and with a non-negative oòset.

3.2.3 Time Grid
_e time grid provides a timing-oriented approach to triggering tasks within a processing environment,
with each task being assigned a ûxed period in which an instance of it is added to the processing envi-
ronment’s task queue. In the deûnition of processing environments we deûned the function TG, which
assigns each task 𝜏 on a processing environment to a period of time 𝜌 ∈ R+ in which it is supposed to
be repeated. Tasks and time grids are in a one-to-many relationship, which means that each task must be
assigned exactly one period, but multiple tasks can run in the same period. When inspecting properties
of distributed functions on multiple systems, the time grid of a processing environment is dependent on
that system’s clock, so the clock oòset is relevant and might shi� the start of triggered tasks when seen in
comparison.

In ûgure 3.6 we can see an example of two tasks sharing the same BCET, WCET and period, running
on diòerent systems with a slight clock oòset. _e tasks are deûned as 𝜏1 = {𝑓1,6,6,1}, 𝜏2 = {𝑓2,6,6,1}
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Time

Tasks

5 10 15

𝜏1 on pe1

𝜏2 on pe2

clock oòset:
co(pe1,pe2) = 1.5

Figure 3.6: Two tasks running in the same time grid on diòerent processing environments with a slight
clock oòset

and TG(𝜏1) = TG(𝜏2) = 10. Although both systems are running the same task in the same time grid, the
task instances start and end at diòerent points in time, each separated by the clock oòset between the two
systems. Note that in ûgure 3.6, the reference system is pe1.

3.2.4 Scheduling
In real-time systems, a scheduler is used to both manages the task queue and to choose which task in the
task queue shall be executed next, based on its scheduling strategy.

Deûnition 3.16 (Scheduler). Each processing environment must have exactly one scheduling function
Sch that, given a non-empty task queue TQ as input, returns exactly one task instance 𝑖 ∈ TQ chosen
based on the scheduling strategy.

Wewill only cover fully deterministic scheduling functions, such that for any task queueTQ, a scheduling
function applied to it always returns the same task instance 𝑖.
Any task instance in the queue is in exactly one of the following four states at any given time:

• ready: time spent a�er being added to the queue, but before the ûrst execution

• executing: the instance is actively being executed by the system; each processing environment can
have at most one task instance in this state at any given point in time

• suspended: a�er already being executed, the task is temporarily suspended so that another task can
enter the executing state

• done: the instance was ûnished and will be dequeued; since we consider dequeuing to be an instan-
taneous process, no time is spent in this state

_e states of a task instance and possible transitions are depicted in ûgure 3.7. Both scheduling strategies
introduced in the following two subsections are preemptive scheduling strategies, which means that a
task instance that is currently being executed might be temporarily suspended to allow for the execution
of another task instance. _e transitions marked with start and ûnish are the transitions in which the
corresponding events of the implemented function occur.
Each processing environment has exactly one task queue TQ, which is ûlled by the time grid triggering

tasks. Deûning the state of a task queue at any given time requires a discrete time model and due to the
varying execution time, the state of a task queue is non-deterministic even for a deterministic scheduling
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ready executing done

suspended

add to queue remove from queue

start ûnish

preemptresume

Figure 3.7: States of a task instance and available transitions in between

function. A formal approach to the deûnition of a task queuewill be given in section 4.1,where preparations
for the model are detailed.

OSEK Scheduling
A common scheduling strategy in automotive systems is that of OSEK OS, a real-time operating system
aimed at distributed embedded control units with special support for automotive requirements[39]. _e
OSEK Scheduler is priority-based; here we will introduce preemptive OSEK scheduling, which allows
instances of tasks with a higher priority to interrupt lower-priority ones. Since the priority of an OSEK
task is given during task deûnition and does not change with time, OSEK scheduling is considered to be a
static scheduling strategy[15].

Deûnition 3.17 (OSEK Scheduling). We consider an OSEK Task a tuple 𝜏 = (𝐹,BCET,WCET, 𝑃 ),
where the scheduling information 𝑃 ∈N is the unique task priority. No two tasks on the same processing
environment may be assigned the same priority.
AnOSEKTask Instance is a tuple 𝑖 = (𝜏,𝑠,et),where 𝜏 is anOSEK task._eOSEK scheduling function

OSEK is deûned over a task queue of OSEK instances as OSEK(TQ) = min𝑠(max𝑃𝜏 (TQ)).

An OSEK scheduler always selects the task instance of a task with the highest priority 𝑃 from a given
queue. Should multiple instances of the same task be in the queue, the task instance with the lowest start
time is selected. Since no two instances of the same task can be added to the queue at the same time, the
OSEK scheduling function is deterministic by deûnition.

In ûgure 3.8 we see an example of an OSEK scheduled processing environment with three tasks. Task
𝜏1 = {𝑓1,2,2,3} with TG(𝜏1) = 8 has the highest priority and is always directly executed, spending no
time in either the ready state nor in the suspended state. _e task 𝜏2 = {𝑓2,3,3,2} with TG(𝜏2) = 6 has a
lower priority than 𝜏1, but is o�en executed directly as well, sometimes waiting for an instance of 𝜏1; in
the inspected time frame, only a single instance of 𝜏2 enters the suspended state. As a typical example of
a low-priority task, 𝜏3 = {𝑓3,5,5,1} with TG(𝜏3) = 20 rarely spends time being executed; although it has
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Time

Task
Priority

5 10 15 20 25

𝜏1

𝜏2 ready executing suspended

𝜏3

Figure 3.8: Preemptive OSEK scheduling of three tasks on a system

an execution time of just 5 time steps, the ûrst instance of it ûnishes a�er spending a total of 18 time steps
in the queue.

EDF Scheduling
Amore recent trend in real-time systems is the application of the earliest deadline ûrst (EDF) scheduling
strategy, which selects the tasks from the queue which are closest to their deadline to be run next[42, 51].
Although each task is assigned a ûxed relative deadline, scheduling is done based on the absolute deadline
of each task instance, computed from the start time of the instance and the relative deadline of the task.
As such, EDF scheduling is considered to be a dynamic scheduling strategy, since the ûnal scheduling
parameter is only available during runtime and not beforehand[15].

Deûnition 3.18 (EDF Scheduler). Weconsider anEDFTask a tuple 𝜏 = (𝐹,BCET,WCET,𝐷),where the
scheduling information 𝐷 ∈R+ is a relative deadline. _e deadline denotes that a successful execution
of the task instance must have happened 𝐷 time units a�er an instance of the task has been queued. If
this rule is violated and can’t be guaranteed, the system is considered to be non-schedulable with the
current scheduling parameters.
An EDF Task Instance is a tuple 𝑖 = (𝜏,𝑠,et), where 𝜏 is an EDF task.. _e EDF scheduling function

EDF is deûned over a task queue of EDF instances as EDF(TQ) = min𝑠(min𝑑(TQ)), where 𝑑 = 𝑠+𝐷𝜏
is the absolute deadline of the task instance.

An EDF scheduler always selects the task instance with the nearest absolute deadline. Should multiple
task instances with the same absolute deadline be in the queue at the same time, the scheduler selects the
instance that was ûrst added to the queue. While we are unable to exactly formalize this without a more
formal deûnition of the task queue, it is covered in chapter 4.

Time

Task
Priority

5 10 15 20 25

𝜏1

𝜏2 scheduled executing suspended

𝜏3

Task Instance is added to queue Deadline of corresponding Task Instance

Figure 3.9: EDF scheduling of three tasks on a system
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In ûgure 3.9 we see an example of EDF scheduling with tasks sharing the same BCET,WCET and period
of those from ûgure 3.8, but with diòerent scheduling parameters. _e task 𝜏1 = {𝑓1,2,2,3} has a relative
deadline of 3, which indicates a high-priority, and its instances are thus always directly executed a�er being
added to the queue, at least in the time frame shown. Task 𝜏2 = {𝑓2,3,3,8} has a relative deadline of 8 but
a period of 6, which means that there could be multiple instances of it in the queue at the same time; in the
ûgure, this is the case in the time steps 18 to 20, indicated by the larger, second block in the background row.
To easily identify the corresponding add and deadline markers, each odd pair for 𝜏2 is considerably smaller.
_e task 𝜏3 = {𝑓3,5,5,16} is again an example of a low-priority task, but in contrast to OSEK scheduling,
it is executed in the time frame from step 12 to 15, although an instance of 𝜏2 is already in the queue.
_is highlights the dynamic nature of EDF scheduling as well as an important feature, as this strategy is
eòectively avoiding task starvation – a problem with static scheduling strategies, where low-priority tasks
are not or only very rarely executed due to high-priority tasks preempting them – and other problems of
static scheduling strategies.

3.3 Real-Time Requirements
In this section several diòerent types of requirements demanded from real-time systems are explained. All
requirements are imposed on the concept level, over functions and event chains – the fulûllment of these
requirements are up to their actual implementations, the tasks implementing these functions. _is means
that while we deûne each requirement on functions, we will later verify them on the tasks implementing
these functions, running on processing environments.

3.3.1 Maximum Execution Time
_emaximum execution time is a real-time requirement deûning a limit for the execution time of a single
function.

Deûnition 3.19 (Maximum Execution Time of a Function). For any function 𝑓 we can deûne aMaxi-
mum Execution TimeMET(𝑓 ), whichmeans that each task instance of a task implementing the function
must ûnish within the speciûed time.

In other words, the maximum execution time is a constraint that speciûes the maximum amount of
time that may pass between an occurrence of the start event and the corresponding ûnish event for a
function. Figure 3.10 shows how an example of how this constraint may be violated for a function 𝑓1 with
MET(𝑓1) = 4.

Time

Events

finish𝑓1

start𝑓1 3 ≤MET(𝑓1) 2.5 ≤MET(𝑓1) 5 >MET(𝑓1)

Figure 3.10: Events to consider when dealing with a function’s maximum execution time

In TADL2, the maximum execution time is denoted using a DelayConstraint. Such a constraint deûned
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the time bounds in which a target event must happen a�er a source event occurred and when applied to
the start and ûnish event of a function, speciûed it’s MET.

In addition to the upper bound, a lower bound can be assigned to deûne a minimum execution time.
Assuming the lower bound to have the default value, which is zero, we are able to deûne the requirement
as shown in ûgure 3.10 using the TADL2 code listing 3.3

DelayConstraint met_f1 {
source f1_start,
target f1_finish,
lower = 0,

5 upper = (4 ms on universal_time)
}

Listing 3.3: DelayConstraint to deûneMET(𝑓1) = 4ms

3.3.2 Maximum Reaction Time
_emaximum reaction time is a real-time requirement deûning a limit for the time of a full �ow through
an event chain.

Deûnition 3.20 (Maximum Reaction Time of an Event Chain). For any event chain ec we can deûne
a Maximum Reaction TimeMRT(ec), which declares the maximum time that may pass between the
occurrence of a stimulus event at the start of a �ow and the corresponding occurrence of the response
event at the end of the �ow.

In TADL2, a ReactionConstraint deûnes bounds for the time a�er the stimulus in which the correspond-
ing response in an event chain must occur. It is similar to the DelayConstraint but includes the causal
relation given by the event chain and take an event chain reference as scope rather than two single events.
An example of an event chain �ow was given in ûgure 3.5, to impose an MRT restriction upon the shown
event chain and all valid �ows using TADL2, one would proceed as shown in listing 3.4.

ReactionConstraint mrt_ec {
scope ec,
maximum = (20 ms on universal_time)

}

Listing 3.4: ReactionConstraint to deûneMRT(ec) = 20ms

For a distributed function in an automotive so�ware system, the maximum reaction time might be
dependent on a large number of parameters, including the period of the tasks implementing the function,
scheduling and variable runtimes as well as oòset of processing environments. Figure 3.11 gives a glimpse of
how complex the timing of event chains can get, evenwith just four systemswithout any oòset, running only
a single task each. _is will be covered in more depth in section 5.2.2, where we will detail the veriûcation
of the MRT requirement and explain several dependencies based on the model developed in chapter 4.

3.3.3 Periodicity
Closely related to the time grid of a task is the periodicity requirement.
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Time

Tasks

5 10 15 20 25 30

𝜏1 on pe1

𝜏2 on pe2

𝜏3 on pe3

𝜏4 on pe4

Flow 1: 0 to 22, total length of 22 Flow 2: 6 to 30, total length of 24

Flow 3: 12 to 30, total length of 18

Figure 3.11: Reaction time of event chain �ows using a path through 𝜏1, 𝜏2, 𝜏3, 𝜏4

Deûnition 3.21 (Periodicity of a Function). For any function 𝑓 we can deûne a Periodicity requirement
PER(𝑓 ), declaring the maximum time considered to be valid between each occurrence of the ûnish
event of 𝑓 .

_e periodicity requirement deûnes constraints for the time between two occurrences of the ûnish event
of the corresponding function. In ûgure 3.12, occurrences of the start and ûnish events of a function 𝑓1 are
depicted. _e requirement PER(𝑓1) = 5 is imposed upon this function, such that ûgure 3.12 shows a valid
as well as an invalid distance between the ûnish times of the function.

Time

Events

5 10

finish𝑓1

start𝑓1

4 ≤ PER(𝑓1) 6 > PER(𝑓1)

Figure 3.12: Visualization of periodicity based on events

In TADL2, the requirement can be described using the RepeatConstraint, which expresses the constraint
of an event repetition inside given bounds, an example for PER(𝑓1) = 4 is shown in listing 3.5. Apart
from the event on which the constraint is imposed upon, the lower and upper bounds, as well as the span
can be declared. _e latter allows to not only specify that every occurrence of the event has to be periodic
within the bounds, but that during the given time frame the designated amount of repetitions need to occur,
without explicitly imposing restrictions upon the single occurrences. We will assume both the lower bound
and the span to have their default values, which are 0 and 1 respectively, such that the RepeatConstraint
can be used for the periodicity requirement as deûned here.

RepeatConstraint per_f1 {
event f1_finish,
lower = 0,
upper = (4 ms on universal_time),

5 span = 1
}

Listing 3.5: TADL2 snippet to declare PER(𝑓1) = 4ms
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Figure 3.13 shows how the periodicity requirement might be violated on an automotive so�ware sys-
tem, considering low-priority tasks running in a tight time grid. _e example shows of a single, OSEK-
scheduled processing environment with 𝜏1 = (𝑓1,4,4,3), 𝜏2 = (𝑓2,3,3,2), 𝜏3 = (𝑓3,1,1,1)within the time
grid TG(𝜏1) = 12,TG(𝜏2) = 10,TG(𝜏3) = 5. Although 𝜏3 has an execution time of only 1 time step, its
execution is delayed for a long time by the other two tasks, so much that there o�en are two instances of
𝜏3 in the queue. When these execute in bursts they leave a lot of time between the occurrences, resulting
in a violation of the example requirement PER(𝑓3) = 8.

Time

Tasks

5 10 15 20 25

𝜏1

𝜏2

𝜏3

1 ≤ PER(𝑓3) 9 > PER(𝑓3) 1 ≤ PER(𝑓3) 5 ≤ PER(𝑓3)

Figure 3.13: Violation of the periodicity requirement in a system with three tasks

3.3.4 Maximum Data Age
To set constraints relating to data thatmight travel between two functions, amaximumdata age requirement
may be speciûed.

Deûnition 3.22 (MaximumData Age between a Function Pair). For any pair of functions 𝑓1, 𝑓2 we can
deûne aMaximum Data AgeMDA(𝑓1, 𝑓2), declaring the maximum time that may have passed since the
last occurrence of finish𝑓1 when the event start𝑓2 occurs.

Considering events, the maximum data age requirement represents an inverted constraint, such that
the second event for which the constraint is imposed upon, start𝑓2 , triggers the veriûcation and the time
since the last occurrence of finish𝑓1 is calculated. _is means that the event finish𝑓1 may occur multiple
times in between and when start𝑓2 occurs, the most recent occurrence is used for comparison against the
constraint; an example is given in ûgure 3.14.

Time

Events

5 10

start𝑓2

finish𝑓1 3 ≤MDA(𝑓1, 𝑓2) 3 ≤MDA(𝑓1, 𝑓2) 4.5 >MDA(𝑓1, 𝑓2)

Figure 3.14:_e maximum data age constraint visualized in event context with MDA(𝑓1, 𝑓2) = 4

To represent the MDA requirement in TADL2, we use an AgeConstraint, which imposes in which time
frame before a response in an event chain the corresponding stimulus must have occurred – it can be
imagined as an invertedReactionConstraint._e example fromûgure 3.14 is speciûed as a TADL2 constraint
in listing 3.6.
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da_f1_f2 = EventChain {
stimulus = f1_finish,
response = f2_start

}
5

AgeConstraint mda_f1_f2 {
scope = da_f1_f2
minimum = 0
maximum = (4 ms on universal_time)

10 }

Listing 3.6: TADL2 AgeConstraint to express MDA(𝑓1, 𝑓2) = 4ms

In automotive so�ware systems, the MDA denotes the maximum amount of time since the last ûnish
of a task 𝜏1 implementing 𝑓1 when a task 𝜏2 implementing 𝑓2 is started. It is a way to logically deûne
the dependency on recent information, read by 𝑓2 and written by 𝑓1. In ûgure 3.15 we have two example
processing environments each with a single task running on them. Considering 𝜏1, 𝜏2 to implement the
functions 𝑓1, 𝑓2 respectively, we can impose the maximum data age requirement MDA(𝑓1, 𝑓2) = 8 upon
them and see a violation a�er just û�een time steps.

Time

Tasks

5 10 15 20

𝜏1 on pe1

𝜏2 on pe2

4 <MDA(𝑓1, 𝑓2)
9 >MDA(𝑓1, 𝑓2)

Figure 3.15: Two tasks showing a maximum data age violation

3.3.5 Synchronization
By imposing a synchronization requirement upon several functions 𝑓1, . . . , 𝑓𝑛 we require them to always
ûnish close to each other.
An example of the synchronization constraint on the functions 𝑓1, 𝑓2, 𝑓3 is given in ûgure 3.16, where the

constraint SYNC(𝑓1, 𝑓2, 𝑓3) = 3,5 is shown. A�er a ûrst occurrence of one of the three ûnish event, the time
frame in which the other two ûnish events need to occur is highlighted. _ese time frames may overlap
as seen in the time steps 6 to 6,5 as long as in each time frame, the required events occur. A violation of
the synchronization requirement is shown near the end of the depicted time, with the ûnish event of 𝑓2
occurring only a�er the required time frame.

Deûnition 3.23 (Synchronization of a Set of Functions). For a set of two ormore functions 𝑓1, . . . , 𝑓𝑛 we
can deûne a Synchronization requirement SYNC(𝑓1, . . . , 𝑓𝑛), which speciûes that a�er an occurrence of
one ûnish event from a function in the set, one ûnish event of all other functions in the set must occur
within the given time frame.
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finish𝑓3

finish𝑓2

finish𝑓1

Figure 3.16: Finish events of the functions 𝑓1, 𝑓2, 𝑓3 with SYNC(𝑓1, 𝑓2, 𝑓3) = 3.5

_e TADL2 SynchronizationConstraint describes how closely several events need to occur together.
During the deûned tolerance frame, all events need to occur at least once; the TADL2 constraint for the
requirement visualized in ûgure 3.16 can be found in listing 3.7.

SynchronizationConstraint f1_f2_f3_sync {
events f1_finish, f2_finish, f3_finish
tolerance = (3 ms on universal_time)

}

Listing 3.7: Speciûcation of SYNC(𝑓1, 𝑓2, 𝑓3) = 3.5 using TADL2

Having two systems with two diòerent tasks each, ûgure 3.17 shows how the periodicity requirement
might be violated in automotive so�ware systems, taking system oòset and scheduling into account and
using the very strict constraint SYNC(𝑓2, 𝑓4) = 1.

Time

Tasks

5 10 15 20

𝜏1 on pe1

𝜏2 on pe1

𝑜(pe1,pe2) = 1

𝜏3 on pe2

𝜏4 on pe2

1 ≤ SYNC(𝑓2, 𝑓4) 2 > SYNC(𝑓2, 𝑓4)

Figure 3.17: Violation of the synchronization constraint between two tasks on diòerent processing environ-
ments with a slight oòset

3.3.6 Arithmetically Detecting Inconsistencies
_ere are a couple of inconsistencies in real-time requirements that can be checked for using simple arith-
metic comparisons, ignoring scheduling and an actual execution model of the processing environments.
For the requirements detailed in section 3.3.1 to section 3.3.5, these trivial inconsistencies include the
following:

• MET(𝑓 ) <WCET𝜏 : if the worst-case execution time of a task 𝜏 implementing a function 𝑓 is larger
than the maximum execution time deûned as a requirement over 𝑓 , the requirement cannot always
be met and is infeasible; a simple counter-example to prove this is a task instance with the WCET as
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execution time.

• MRT({𝑓1, . . . , 𝑓𝑛}) <
∑︀
𝜏∈{𝜏1,...,𝜏𝑛}WCET𝜏 : if the maximum response timed of an event chain con-

sisting of the functions 𝑓1, . . . , 𝑓𝑛 is smaller than the sum of worst-case execution time of the tasks
𝜏1, . . . , 𝜏𝑛 implementing these functions, the requirement cannot be met and is considered to be
infeasible. Even if all tasks are running on the same processing environment with priorities deûning
the exact order as deûned in the event chain, the requirement is violated when all task instances have
the WCET as execution time.

• PER(𝑓 ) < TG(𝜏): if the periodicity requirement of a task is smaller than the task’s period, the
requirement cannot be met and is inconsistent; it suõces to observe two task instances of such a
task to prove this.

• PER(𝑓 ) < WCET𝜏 : if the periodicity requirement of a task is smaller than the task’s WCET, the
requirement cannot be met and is considered to be inconsistent. Even if the period assigned to the
task is equal to or larger than the requirement speciûed, the period is larger than the task’s WCET,
meaning that instances of the task just ûll up the queue when instances of the task consistently ûnish
with the WCET as execution time.

• SYNC(𝑓1, . . . , 𝑓𝑛) andTG(𝜏𝑎) , TG(𝜏𝑏) for any 𝜏𝑎, 𝜏𝑏 ∈ {𝜏1, . . . , 𝜏𝑛}: when a synchronization require-
ment is imposed upon a set of functions 𝑓1, . . . , 𝑓𝑛, all tasks 𝑓1, . . . , 𝑓𝑛 implementing these functions
must run in the same time grid, otherwise the requirement is considered to be infeasible. If at least
one task is running in another time grid, the instances of this task will get out of sync eventually.

_e detection of more intricate feasibility issues requires at least basic modelling of the behavior of
automotive so�ware systems.Wewill develop such amodel in chapter 4 using timed automata, based on the
concepts introduced in section 3.2, and show how to use this model to identify unrealizable requirements
in chapter 5.
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In this chapter we build a model of timed automata which will be used to provide a base for the veriûca-
tion. We start with preparations in section 4.1, introducing preparations for the model-building process
that will be used throughout this chapter.

In section 4.2 we introduce a generic model of a processing environment to simulate the behavior of
automotive so�ware systems in regard to timing._ismodel is reûned in section 4.2.2 to provide additional
timing information to be used in the veriûcation. Having established the formal model, we will transfer it
to UPPAAL in section 4.3 and explain limitations that arise from the use of the tool.
During the course of this chapter, we will frequently useB to denote assignments to avoid confusion

when = is used for comparisons in the context of transition guards.

4.1 Preparations
As stated in section 1.2, we require a simulation of system behavior in regard to timing to be able to detect
most inconsistencies in requirements. _is means that we want to build a general model of a processing
environment with which we can simulate the behavior of automotive so�ware systems, including task
execution and scheduling.

Real-time systems are discrete systems, which means that the number of states such a system can be in
is ûnite. Discrete systems spend a certain time in a state and then move on to the next state and, due to
the number of states being ûnite, can be represented as a ûnite state machine. In real-time systems, clocks
operate on a tick-based basis, triggering periodically with a ûxed delay between each trigger, called the
tick.[30]

_is allows us to deûne a discrete-time model of a processing environment using a timed automaton, for
which we also deûne such a tick. Clock constraints in timed automata, that are used for both guards and
location invariants, are required to be in N as deûned in deûnition 2.1. We deûne the tick rate as tickB 1,
since this allows us to have a common base for time that is both easy to understand and versatile. Any
given best-case and worst-case execution time of tasks, which now also need to be in N, can be divided
by this tick rate.

Given this tick rate, we will deûne that a processing environment executes a task instance for exactly
one tick before it determines the task instance to execute next. _is eòectively means that every tick, the
scheduler chooses a task instance based on its scheduling strategy, enabling preemptive scheduling.

In addition to a clock 𝑐 counting the system time, each automaton will have an additional clock tc with
𝑣(tc) ∈ [0, tick]. _is tick clock tc will count the time up to each tick, and will be reset on a transition into
the base location of the automaton model, enabling us to restrict the time of each action outside of this
location to exactly one tick.
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_is discrete, tick-based time model allows us to recursively deûne the task queue dependent on both
the system and the time as TQ(pe, 𝑡) based on a start state TQ0:

TQ(pe,0)B TQ0,

TQ(pe, tick 𝑛)B TQ(pe, tick (𝑛− 1))∪ add ∖ remove

In this recursive deûnition, add is the set of elements to be appended to the task queue compared to the
previous tick and remove is the set of elements to be removed since then. Note that this still does not allow
us to deterministically determine the state of a task queue at any given time. As mentioned in section 3.2.4,
the state of the task queue at any given time is non-deterministic even for a deterministic scheduling
function, as long as at least one task with a variable runtime (BCET𝜏 ,WCET𝜏 ) is part of the processing
environment.
For a processing environment pe we deûne the macro NT representing new task instances to be added

to the queue. _is macro is an essential part of the add set in each step, since it ensures that all tasks are
triggered based on their assigned time grid, and corresponding task instances are added to the queue. We
deûne it as the following:

NTB
{︁
(𝜏,𝑣(𝑐),0) : 𝑣(𝑐) mod TG(𝜏) = 0, 𝜏 ∈ 𝑇pe

}︁
_ismacro is deterministic, since the time grid of tasks is ûxed. At any point in time given by the automa-

tons internal clock 𝑐, it contains the set of task instances corresponding to tasks forwhich𝑣(𝑐)modTG(𝜏) =

0 is true, initializing these instances with 𝑠B 𝑣(𝑐) and etB 0. _is set is added each tick and simulates
time-triggered, periodic task activations based on the time grid. Note that for 𝑣(𝑐) = 0 this includes an
instance of every task in the system, since 0 mod 𝑛 = 0 is true for any 𝑛.

Since we have already decided that the execution of a task instance is simulated for exactly one tick
before rescheduling, we can deûne this execution as part of the add and remove macro. Assuming there is
a task instance 𝑖 = (𝜏,𝑠,et), 𝑖 ∈ TQ(pe,𝑣(𝑐)) being executed. When we want to simulate the execution for
one tick while keeping the instance in the queue, we deûne the task queue for the next tick as the following:

TQ(pe,𝑣(𝑐) + tick)B TQ(𝑠,𝑣(𝑐))∪ {(𝜏,𝑠,et+ tick)} ∪NT ∖ {𝑖}

_is essentially removes the instance and re-adds it to the queue with increased execution time, as the
instance has been executed for one tick. When the execution time of the instance has risen above or is at
least equal to the corresponding task’s BCET, the instance can be removed, which can be accomplished by
simply not re-adding it to the queue:

TQ(pe,𝑣(𝑐) + tick)B TQ(𝑠,𝑣(𝑐))∪NT ∖ {𝑖}

Since each processing environment is simulated using its own timed automaton, we require a network
of these automata to represent a distributed system. To take clock oòset in distributed systems into con-
sideration, we will incorporate an initial location that delays the actual execution and simulation of the
processing environment until the internal clock’s oòset is equal to the oòset to the reference system. For
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this our initial location needs to wait until 𝑐 = co(𝑐𝑟 , 𝑐) is met and then reset 𝑐 in an outgoing transition.
With all these considerations in mind, we can start with the model-building process, creating a model

based on parameters such that we can deûned ûxed rules to transfer processing environments to these
automata.

4.2 Building the Model
_is section will cover the transfer of a processing environment pe = (𝑇 ,TG,TQ,c,Sch) to a timed au-
tomaton, incorporating the preparations done in section 4.1. In addition to the properties we need a way
to incorporate scheduling based on a scheduling strategy Sch as deûned in section 3.2.4, which can be
replaced by any of the two deûned scheduling algorithms.

We will start by building a model to simulate the behavior of a processing environment in section 4.2.1
and will extend this model in section 4.2.2 to gain more insight into timing-relevant properties.

4.2.1 Structure of a Single Processing Environment Model
Starting with a model to simulate just the timing behavior of a single processing environment, we assume
that we have a processing environment pe and a reference system pe𝑟 with a clock c𝑟 . We show how achieve
such a model using a timed automaton with just four locations.

_e ûrst location in our automaton model is the start location, which will be used to introduce the clock
oòset as mentioned in section 4.2. For this purpose, we set 𝐼(start)B 𝑐 ≤ co(𝑐𝑟 , 𝑐) and add an outgoing
transition with the guard 𝑐 = co(𝑐𝑟 , 𝑐), resetting the clocks. Additionally, this transition shall push an
instance of every task on the system in the queue to simulate startup behavior, which can be achieved
simply by resetting the clock 𝑐 ûrst and then setting TQ(pe,0)B TQ0 BNT.

_e transition shall lead to the base location, a location in which the automaton returns a�er every tick
and which leads to other locations based on scheduling. We will call this location scheduling andmark it as
committed, thus no time may pass while inside this location, such that time only passes while simulating
the execution of tasks or an idle state.

In order to simulate timing aspects of task execution we add a location in which a tick can pass, which
is then added to the execution time of the currently selected task instance; we will call this location exec.
_is location shall have exactly one transition leading to it, in which a task instance from the task queue
is selected based on the scheduling strategy. Depending on the execution time that has already passed for
this task instance, the instance must either stay in the queue, could be removed or must be removed. If the
worst-case execution time is not yet reached a�er the tick has passed, the task instance might stay in the
queue, so we add an outgoing edge for this case keeping the instance with an updated execution time in
queue. Should the best-case execution time already be reached, the task instance could be removed from
the queue, so we add an outgoing edge removing the instance.
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Until the BCET of the task is reached, only one edge is available, which keeps the instance in queue and
only increases its execution time. When the BCET is reached, the transition removing the instance from
the queue becomes available, but the edge to allow the task instance to stay in the queue remains available
until the execution time of the instance is larger than the task’s WCET. If the execution time of the current
task instance is between the BCET and WCET of the corresponding task, both edges are available at the
same time. _is allows us to exploit non-determinism to simulate variable execution times, as all possible
states the system could be in are part of the simulation. Since we do not simulate functional behavior
but simply the behavior in regard to timing, this is a valid approach approach allowing us to simulate all
possible ûnal execution times of the task instances.

If there is no task in the queue, the system is in an idle state, for which we add an idle location. Just like
during task execution, a tick passes while in this location, but the queue does not need to be manipulated
as it is empty. We will add a transition to leave this location when the tick has passed, setting the queue to
NT to simulate the addition of time-triggered tasks.

In addition to this, we also need to add transitions from the schedule location to the exec location and
the idle location based on whether the task queue is empty, as well as invariants to both of these locations
to force them to take an outgoing transition a�er each tick.

start
𝑐 ≤ co(c𝑟 ,c)

schedule

exec
tc ≤ tick

idle
tc ≤ tick

𝑐 = co(c𝑟 ,c)
𝑐B 0
tcB 0
TQBNT

TQ(pe,𝑣(𝑐)) , ∅
𝑖 B Sch(TQ(pe,𝑣(𝑐))), 𝜏 B 𝑖𝜏

TQ(pe,𝑣(𝑐)) = ∅

tc = tick

tcB 0,TQ(pe,𝑣(𝑐))BNT

tc = tick∧ et𝑖 + tick ≥ BCET𝜏
tcB 0,TQ(pe,𝑣(𝑐))B TQ(pe,𝑣(𝑐)− tick)∪NT ∖ {𝑖}

tc = tick∧ et𝑖 + tick <WCET𝜏
tcB 0,TQ(pe,𝑣(𝑐))B TQ(pe,𝑣(𝑐)− tick)∪ {(𝜏,𝑠𝑖 ,et𝑖 + tick)} ∪NT ∖ {𝑖}

Figure 4.1: Model of a single Processing Environment

With all this combined we achieve the model shown in ûgure 4.1 with which it is already possible to
simulate scheduled task execution with variable execution times, already incorporating the clock oòset
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when used in a network. _e system works in a loop a�er leaving the initial start location, an example of a
single run through this loop starting at 𝑣(𝑐) = 𝑖 for a currently idle system could look like the following,
with the clock vector being ( 𝑐tc ):

· · · −→ ⟨schedule,
(︁
𝑖
0

)︁
⟩ 0−→ ⟨idle,

(︁
𝑖
0

)︁
⟩ tick−−−→ ⟨idle,

(︁
𝑖+tick
tick

)︁
⟩ 0−→ ⟨schedule,

(︁
𝑖+tick
0

)︁
⟩ −→ ·· ·

But our goal isn’t just the simulation of such a system, we would like to verify the real-time requirements
in section 3.3, for which requiremore information about timing.Wewill speciûcally reûne the exec location
to get more detailed information about the process of task execution on the system.

4.2.2 Improved Model to aid Veriûcation
To verify the real-time requirements we covered, we need to know when a task starts and when it ends.
Since it does not suõce to know when any tasks start or ends, but we require that information separately
for any task. Instead of a simple exec location to simulate the time spent executing a task, we require several
locations for each task on the processing environment separately. We start by adding a 𝜏exec location for
the simulation of time spent executing a task like known from the previous model. In addition to this we
also add a 𝜏init location, which is the location where the incoming transition from the scheduling location
will lead to.

To get information on when a task starts and ûnishes, we add the locations 𝜏start and 𝜏ûnish for each
task, which need to be deterministically branched to. For the determination of the start time, we add a
transition guarded by et𝑖 = 0 from 𝜏init to 𝜏start, a transition guarded by et𝑖 > 0 from 𝜏init to 𝜏exec
and an unguarded transition from 𝜏start to 𝜏exec. With these transitions, the automaton deterministically
branches into the 𝜏start before the ûrst execution of each task instance, and always transitions to the
location 𝜏exec regardless of the execution time. We mark the location 𝜏init and 𝜏start as committed, since
we only want time to pass in the location simulating task execution.
For the 𝜏ûnish location, we add the incoming transition that may be taken when the task instance’s

execution time is larger than its BCET, and add an outgoing transition to remove the instance from the
task queue. _is way, the 𝜏ûnish must be entered before removing an instance from the queue and we have
a reliable way to determine when a task instance ûnishes. We add an alternate edge that leaves the instance
in the queue, just increasing its execution time, available as long as the WCET is not yet met – as already
known from the previous model.
Adding an additional location 𝜏exec’d a�er 𝜏exec helps with a slightly more accessible logical segmen-

tation of the locations, by having a single edge from the 𝜏exec to the 𝜏exec’d, just reacting to the tick and
increasing the execution time of the instance. _en we can check for the current, already incremented
execution time in the two edges branching oò this location.
Following all this, we obtain a task model like shown in ûgure 4.2. We have also added the location

𝜏done to the end of this model such that this compound, representing a single task, can be added to the
already existing model with just one incoming edge and one outgoing edge each. Both the 𝜏exec’d and
the 𝜏done locations are marked committed as well, such that the 𝜏exec location is the only one which
is not committed. Although a total of six locations need to be added to the automaton representing the
processing environment, only in a single one of them time may pass.

_is model is designed in a way that guarantees that both the start and the ûnish locations are visited
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𝜏 init

𝜏 start

𝜏 exec
tc ≤ tick

𝜏 exec’d

𝜏 ûnish

𝜏 done

𝜏𝑖 = 𝜏

𝑖 B Sch(TQ(𝑠,𝑣(𝑐)))

et𝑖 = 0

et𝑖 > 0

tc = tick

et𝑖 := et𝑖 + tick

ec𝑖 ≥ BCET𝜏

TQ(𝑠,𝑣(𝑐))B TQ(𝑠,𝑣(𝑐)− 𝑣(tc)) ∖ {𝑖} ∪NT

et𝑖 <WCET𝜏

TQ(𝑠,𝑣(𝑐))B TQ(𝑠,𝑣(𝑐)− 𝑣(tc)) ∖ {𝑖} ∪ {(𝜏,𝑠𝑖 ,et𝑖 + tick)∪NT

Figure 4.2: Detailed model of a task with separate start and ûnish locations

exactly once during each execution of a task instance corresponding to the task. In the given model, for
each instance 𝑖 of a task 𝜏 , we know that the automaton enters the location 𝜏start when the scheduler
decides that 𝑖 shall be executed and the instance was either newly appended to the queue or the instance
was in a ready state, whichmeans that this marks the ûrst time this instance is executed. Similarly, we know
that when the 𝜏ûnish location is entered, the corresponding instance will be removed from the queue in
the only available outgoing edge, marking the last point of this instance’s execution.

To gain easier access to runtime and data age information,we add two separate clocks per taskmeasuring
these times. Extending the model with data age clocks is rather simple, since we just need to add a clock
𝜏𝑛da which is reset each time an instance of the task 𝜏𝑛 is ûnished and removed from the queue. Between
these points in time, we have a steady increase in the data age, that is, in the time since the last ûnished
execution of an instance of 𝜏𝑛.
Adding a runtime clock to each task is not quite as trivial, since these shall only be increased while an

instance of the task is currently executing or suspended, but not while the it is in the task queue or the
system is idle and thus has an empty task queue. Since it is not possible to suspend a clock and prevent it
from increasing, the runtime clocks that are not supposed to be increased need to be reset continuously.
_is has the side eòect that we cannot reliably argue about the values of the runtime clocks while they are
in the range [0, tick].

To also grant other automata in a network access to start andûnish information of tasks,we addbroadcast
channels for these actions on the outgoing edges of the corresponding locations.

In ûgure 4.3 we have a very detailed model of task execution based on the model shown in ûgure 4.3,
extended by locations, clocks and broadcast channels.
While the addition of data age clocks and broadcast channels only aòects one edge, we need to be pay

extra attention to the runtime clock. Trivially, the runtime clock of 𝜏𝑛 needs to be reset when an instance
of the task begins to be executed. But in each execution of a task, that is in each time advancement of a tick,
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𝜏𝑛 init

𝜏𝑛 start

𝜏𝑛 exec
tc ≤ tick

𝜏𝑛 exec’d

𝜏𝑛 ûnish

𝜏𝑛 done

𝜏𝑖 = 𝜏𝑛

𝑖 B Sch(TQ(𝑠,𝑣(𝑐)))

et𝑖 = 0

𝜏𝑛rtB 0,
task_n_start!

et𝑖 > 0

tc = tick

et𝑖 := et𝑖 + tick, 𝜏𝑚rtB 0 : ∀𝜏𝑚 ∈ 𝑇pe ∖ {𝜏𝑛} : 𝑣(𝜏𝑚rt) = tick

et𝑖 ≥ BCET𝜏𝑛
𝜏𝑛daB 0, task_n_finish!,

TQ(𝑠,𝑣(𝑐))B TQ(𝑠,𝑣(𝑐)− 𝑣(tc)) ∖ {𝑖} ∪NT

et𝑖 <WCET𝜏𝑛

TQ(𝑠,𝑣(𝑐))B TQ(𝑠,𝑣(𝑐)− 𝑣(tc)) ∖ {𝑖} ∪ {(𝜏𝑛, 𝑠𝑖 ,et𝑖 + tick)∪NT

Figure 4.3: Very detailed model of a task with additional clocks and broadcast channels

only the clocks of the currently executing instance and of suspended task instances shall be incremented,
the others shall be kept at zero. _is is accomplished by resetting each runtime clock on the processing
environment other than the one of the currently executed task to zero if its clock valuation equals exactly
one tick when taking the outgoing edge of the execution location, in which one tick of time passes. We
need to exclude the currently executing task since if this instance is being executed for the ûrst time, its
runtime clock will evaluate to one tick, but in this case this is a valid value. If instances of other tasks are
currently suspended, their runtime clocks will have had a non-zero value before starting the execution of
the current instances and thus their runtime clocks are larger than one tick a�er the execution, which is
also desired behavior.

Unfortunately, this means that even tasks that never run, for example due to scheduling problems, also
have a non-zero runtime clock valuation at times. Since timed automata require clock valuations to be in
R
+, we cannot prevent this by setting unused runtime clocks to −tick before each execution. Because clock

constraints are limited to comparisons to an 𝑛 ∈N0 we cannot implement edges to keep them indeûnitely
small, forcing their value to only be negligibly diòerent from zero.

Integrating this advanced task model in the model for the single processing environment from ûgure 4.1,
we obtain the model shown in ûgure 4.4. _is ûgure shows how to model a system with a total of 𝑛 tasks
𝜏1, . . . , 𝜏𝑛 and has a total of 2𝑛+2 clocks – the local timekeeper 𝑐, the tick clock tc and the runtime and data
clocks for each task 𝜏𝑚rt, 𝜏𝑚da∀𝑚 ∈ {1, . . . ,𝑛}. Transitioning out of the idle location, all runtime clocks of
tasks are set to zero, since that state is only entered when the task queue is completely empty and thus no
task is currently being executed on the system. It is important to highlight that during the startup phase,
while the oòset is not yet reached, both the runtime and data age clocks need to be continually reset as well,
once each tick. Otherwise, the values might rise close to or even above valid values encountered during
simulation and veriûcation, possibly invalidating veriûcation queries.
An alternative display of the model can be found in ûgure A.1, where the locations corresponding to
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Task 𝜏1

Task 𝜏𝑛

start
𝑐 ≤ co(c𝑟 ,c),
tc ≤ tick

schedule

idle
tc ≤ tick

tc = tick
tcB 0
𝜏rtB 0, 𝜏daB 0 : ∀𝜏 ∈ 𝑇pe

𝑐 = co(c𝑟 ,c)
𝑐B 0, tcB 0
𝜏rtB 0, 𝜏daB 0 : ∀𝜏 ∈ 𝑇pe

TQ(pe,𝑣(𝑐)) = ∅ tc = tick

tcB 0, 𝜏𝑚rtB 0 : ∀𝜏𝑚 ∈ 𝑇pe : 𝑣(𝜏𝑚rt) = tick, TQ(pe,𝑣(𝑐))BNT

𝜏1 init

𝜏1 start

𝜏1 exec
tc ≤ tick

𝜏1 exec’d

𝜏1 ûnish

𝜏1 done

𝜏𝑖 = 𝜏1

𝑖 B Sch(TQ(pe,𝑣(𝑐)))

et𝑖 = 0

𝜏1rtB 0,
task_1_start!

et𝑖 > 0

tc = tick

et𝑖 := et𝑖 + tick, 𝜏𝑚rtB 0 : ∀𝜏𝑚 ∈ 𝑇pe ∖ {𝜏1} : 𝑣(𝜏𝑚rt) = tick

et𝑖 ≥ BCET𝜏1
𝜏1daB 0, task_1_finish!,

TQ(pe,𝑣(𝑐))B TQ(pe,𝑣(𝑐)− tick)∪NT ∖ {𝑖}

et𝑖 <WCET𝜏1

TQ(pe,𝑣(𝑐))B TQ(pe,𝑣(𝑐)− tick)∪ {(𝜏1, 𝑠𝑖 ,et𝑖)} ∪NT ∖ {𝑖}

𝜏𝑛 init

𝜏𝑛 start

𝜏𝑛 exec
tc ≤ tick

𝜏𝑛 exec’d

𝜏𝑛 ûnish

𝜏𝑛 done

𝜏𝑖 = 𝜏𝑛

𝑖 B Sch(TQ(pe,𝑣(𝑐)))

et𝑖 = 0

𝜏𝑛rtB 0,
task_n_start!

et𝑖 > 0

tc = tick

et𝑖 := et𝑖 + tick, 𝜏𝑚rtB 0 : ∀𝜏𝑚 ∈ 𝑇pe ∖ {𝜏𝑛} : 𝑣(𝜏𝑚rt) = tick

et𝑖 ≥ BCET𝜏𝑛
𝜏𝑛daB 0, task_n_finish!,

TQ(pe,𝑣(𝑐))B TQ(pe,𝑣(𝑐)− tick)∪NT ∖ {𝑖}

et𝑖 <WCET𝜏𝑛

TQ(pe,𝑣(𝑐))B TQ(pe,𝑣(𝑐)− tick)∪ {(𝜏𝑛, 𝑠𝑖 ,et𝑖)} ∪NT ∖ {𝑖}

Figure 4.4: Model of a single Processing Environment, optimized for veriûcation
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each task are ordered as a row. We generally consider this a cleaner and easier-to-understand approach,
but it is optimized for scrollable displays and not for printing on ûxed-size paper, which is why it is not
directly embedded here.

_e generic approach to transfer a processing environment given as pe = (𝑇 ,TG,TQ, 𝑐,Sch) to the
automaton𝒜pe = ⟨𝑁,𝑙0,𝐸, 𝐼⟩ is the following, assuming a reference system with clock 𝑐𝑟 :

• the set of locations𝑁 composed of

– the locations start,schedule and idle,

– the locations 𝜏𝑛 init, 𝜏𝑛 start, 𝜏𝑛 exec, 𝜏𝑛 exec′d, 𝜏𝑛 finish, 𝜏𝑛 done for each task 𝜏𝑛 ∈ 𝑇 ,
• the set of committed locations𝑁𝐶 ∈𝑁 composed of

– the committed locations schedule,

– the committed locations 𝜏𝑛 init, 𝜏𝑛 start, 𝜏𝑛 exec′d, 𝜏𝑛 finish, 𝜏𝑛 done,

• the initial location 𝑙0 B start ∈𝑁 ,
• the set of edges 𝐸 composed of

– start
tc=tick,𝜖,𝑟−−−−−−−−→ start with 𝑟 B {tc} ∪ {𝜏rt, 𝜏da : ∀𝜏 ∈ 𝑇 },

– start
𝑐=co(𝑐𝑟 ,𝑐),𝜖,𝑟−−−−−−−−−−−→ schedule with 𝑟 B {𝑐, tc} ∪ {𝜏rt, 𝜏da : ∀𝜏 ∈ 𝑇 },

– schedule
TQ(𝑠,𝑣(𝑐))=∅,𝜖,∅−−−−−−−−−−−−−−→ idle,

– idle
tc=tick,𝜂,𝑟−−−−−−−−−→ schedule,

with 𝑟 B {tc} ∪ {𝜏𝑚rt : ∀𝜏𝑚 ∈ 𝑇pe : 𝑣(𝜏𝑚rt) = tick},𝜂 B TQ(𝑠,𝑣(𝑐)) = ∅,
– for each task 𝜏𝑛 ∈ 𝑇 assuming 𝑖 B Sch(TQ(𝑠,𝑣(𝑐)))

1. schedule
𝜏𝑖=𝜏𝑛,𝜖,∅−−−−−−−−→ 𝜏𝑛 init,

2. 𝜏𝑛 init
et𝑖=0,𝜖,∅−−−−−−−→ 𝜏𝑛 start,

3. 𝜏𝑛 init
et𝑖>0,𝜖,∅−−−−−−−→ 𝜏𝑛 exec,

4. 𝜏𝑛 start
⊤,task_1_start!,{𝜏𝑛rt}−−−−−−−−−−−−−−−−−−−−→ 𝜏𝑛 exec,

5. 𝜏𝑛 exec
tc=tick,etBet𝑖+tick,𝑟−−−−−−−−−−−−−−−−−→ 𝜏𝑛 exec′d

with 𝑟 B {tc} ∪ {𝜏𝑚rt : ∀𝜏𝑚 ∈ 𝑇pe ∖ {𝜏𝑛} : 𝑣(𝜏𝑚rt) = tick},
6. 𝜏𝑛 exec′d

et𝑖<WCET𝜏𝑛 ,𝜂,∅−−−−−−−−−−−−−→ 𝜏𝑛 done
with 𝜂F TQ(𝑠,𝑣(𝑐))B TQ(𝑠,𝑣(𝑐)− tick)∪ {(𝜏1, 𝑠𝑖 ,et𝑖)} ∪NT ∖ {𝑖},

7. 𝜏𝑛 exec′d
et𝑖≥BCET𝜏𝑛 ,𝜖,𝜖−−−−−−−−−−−−−→ 𝜏𝑛 finish,

8. 𝜏𝑛 finish
⊤,task_1_start!∧𝜂,𝜏𝑛da−−−−−−−−−−−−−−−−−−−−−−→ 𝜏𝑛 done

with 𝜂F TQ(𝑠,𝑣(𝑐))B TQ(𝑠,𝑣(𝑐)− tick)∪NT ∖ {𝑖},
9. 𝜏𝑛 done

⊤,𝜖,∅−−−−→ schedule,

• the function 𝐼 :𝑁 ↦→ ℬ′(𝒞) assigning the invariants to the locations with

– 𝐼(start) = 𝑐 ≤ co(c𝑟 ,c)∧ tc ≤ tick,
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– 𝐼(idle) = tc ≤ tick,

– 𝐼(𝜏𝑛 exec) = tc ≤ tick for each task 𝜏𝑛 ∈ 𝑇

_e notation 𝜂F 𝑎B 𝑏 is used to denote that the internal action 𝜂 consists of the assignment 𝑎B 𝑏

to avoid confusion with the comparison operator = and the assignment operator used inside the action.
An edge guarded by ⊤ is an unguarded edge, which can be taken at any time. Since these are used as the
single outgoing edges of committed locations here, they must immediately be transitioned over.

4.3 Modelling in UPPAAL
To develop and test the model in UPPAAL we will use version 4.1.19, the newest development snapshot
released on July 1st in 2014. Compared to the current oõcial release from September 27th, 2010, it oòers
several small feature and performance improvements like the addition of a modulo operator and we did
not experience any disadvantages compared to the older version.
Development in UPPAAL is generally done using templates, in which a single timed automaton can be

constructed, and a corresponding deûnition ûle, which allows custom functionality to be added using a
C-like syntax. Templates can have parameters and are then called parametrizable templates, which allow for
the dynamic instantiation of a network of timed automata from a small number of templates and varying
parameters. In addition to templates, global declarations can be made, which apply to all templates; a
single shared version of the global deûnitions exists between all instantiated templates and any changes
to these from a template’s scope immediately aòect all others as well. Apart from declarations in global
and template scope, there are also system declarations, which are used to deûne and initialize the network
of timed automata for simulation and veriûcation. In the system declarations, each timed automaton is
deûned from a template, given parameters when necessary, and composed into the ûnal system.

_is section will detail the development process of the UPPAAL model, starting with the global declara-
tions to setup generic behavior and commonly used functions, and then showing the process of creating
templates and setting up the system. We will only show small snippets of the code here, listings of full code
ûles can be found in section B.1.

4.3.1 Global Declarations
Before setting up the automata and their behavior, we will use the global declarations to implement a task
model and scheduling functions, which can then be accessed from the templates.
During the development of the UPPAAL model, several constants were introduced to deal with o�en-

needed numbers, these are also part of the global declarations. Since these do not contribute to the model
itself, these can be found in listing A.1 in the appendix.

_e language used in UPPAAL resembles C-code, so we deûne our types as struct using typedef .
To be able to refer to tasks, we create the basic structure Task composed of a numeric identiûer, the ID

of the task, and further we enable the speciûcation of the BCET and WCET as well. With this base, we
create the structure EDF_Task , which is composed of a task, a relative deadline and a period, as well as an
OSEK_Task structure, comprised of a priority and a period. Further, we deûne EDF_Task_Instance

and OSEK_Task_Instance , both of which allow us to save their execution time as well as their start time;
additionally, the EDF_Task_Instance also saves the absolute deadline, which is the absolute deadline
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of the instance calculated from the start time and the relative deadline of the corresponding EDF_Task .
We also deûne data types for the task queues, which are aliases for arrays of task instances.
Additionally, since we assume tasks to be unique, we deûne the runtime and data age clocks as arrays

in the global declarations. We proceed the same way with the broadcast channels and also add a Boolean
array to save whether a task is currently being executed, as we are unable to compare clock values outside
of guards in UPPAAL, including custom functions.

typedef struct
{

int[0, TASK_ID_MAX] ID;
int[0, MAX_WCET] BCET;

5 int[0, MAX_WCET] WCET;
} Task;

typedef struct
{

10 Task t;
int[0, MAX_REL_DEADLINE] rel_deadline;
int[0, MAX_PERIOD] period;

} EDF_Task;

15 typedef struct
{

Task t;
int[0, MAX_T_PRIORITY] t_priority;
int[0, MAX_PERIOD] period;

20 } OSEK_Task;

typedef struct
{

EDF_Task edf_t;
25 int[0, TIME_MAX + MAX_REL_DEADLINE] deadline;

int[0, TIME_MAX] start;
int[0, MAX_WCET] et;

} EDF_Task_Instance;

30 typedef struct
{

OSEK_Task osek_t;
int[0, TIME_MAX] start;
int[0, MAX_WCET] et;

35 } OSEK_Task_Instance;

typedef EDF_Task_Instance EDF_Task_Queue[TASK_QUEUE_MAX];
typedef OSEK_Task_Instance OSEK_Task_Queue[TASK_QUEUE_MAX];

40 // verification helpers (clocks and channels for start/end events)
clock rt_c[TASK_ID_MAX];
clock da_c[TASK_ID_MAX];
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bool is_running[TASK_ID_MAX];
broadcast chan task_start[TASK_ID_MAX];

45 broadcast chan task_finish[TASK_ID_MAX];

Listing 4.1: Type deûnitions, global clock and channel arrays

In addition to the type deûnitions, null types had to be created to indicate that no such entity is present.
_enull types are available using NULL_[DATATYPE] and their initial deûnition, alongwith other auxiliary
deûnitions, can be found in listing A.2.

Next up are functions to generate these data types, manage and manipulate the queue and to actually
perform scheduling on a task queue.

EDF Scheduling
To be able to work with the created data types, we want a straight-forward way to generate and initialize
instances. In order to save memory and achieve consistency, we use pass-by-reference to link already-
initiated tasks to EDF tasks using UPPAAL’s & operator when deûning the function parameters. _e
relative deadline and period of the EDF task are passed as values, and the generated EDF_Task is returned
by the function generate_EDF_Task(Task &t, int rel_deadline, int period) .

To create an EDF task instance,we only pass the corresponding task as a reference and the local time of the
processing environment as the parameters, as the rest can be calculated from these. _e absolute deadline is
calculated from the local time and the relative deadline of the EDF task, the start time can be assumed to be
the passed local time, and the execution time is zero, since the instance has just been newly generated. _is
means that generate_EDF_Task_Instance(EDF_Task &edf_t, int local_time) shall be called
from the templates when appending new instances to the queue and the returned EDF_Task_Instance

is only valid for the processing environment from which the function call initiated.
Since UPPAAL does not have a default null type, we need to ûll newly created task queues with the

NULL_EDF_TI instance. In all methods dealing with a processing environment’s task queue, we will pass
the EDF_Task_Queue as a reference parameter and perform the operations directly on it. During the ini-
tialization of a template corresponding to a processing environment, initialize_EDF_Task_Queue(EDF
_Task_Queue &tq) shall be called as early as possible, and must be called before any other operations
are applied to the queue in order to avoid undeûned behavior.

EDF_Task generate_EDF_Task(Task &t, int rel_deadline, int period) {
EDF_Task new_task = { t, rel_deadline, period };
return new_task;

}
5

// create an EDF task instance with a deadline based on the current time
EDF_Task_Instance generate_EDF_Task_Instance(EDF_Task &edf_t, int local_time) {

EDF_Task_Instance new_ti = { edf_t, local_time + edf_t.rel_deadline, local_time, 0 };
return new_ti;

10 }

// fill the EDF task queue given as a reference parameter with null values
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void initialize_EDF_Task_Queue(EDF_Task_Queue &tq) {
for (i : int[0, TASK_QUEUE_MAX - 1]) {

15 tq[i] = NULL_EDF_TI;
}

}

Listing 4.2: Auxiliary functions to help manage EDF data types

With an initialized system, we are working with EDF task instances in the task queue represented by the
data type EDF_Task_Instance . Before actually declaring the scheduling function, we need the ability
to properly maintain the task queue. We chose to represent the queue as an array, initialized with the
elements NULL_EDF_TI , ordered in a way that we can consider the ûrst encountered NULL_EDF_TI
to be the end of the queue. _is is a consistency requirement that needs to be considered when developing
the functions to enqueue and dequeue the task instances.

_is means that enqueuing is comparatively simple, as EDF_enqueue(EDF_Task_Queue &tq, EDF_

Task_Instance &edf_ti) searches through the queue from the beginning and inserts the reference
to the newly created task instance in the ûrst free place found in the queue. Dequeuing changes the task
instance at the given position to a NULL_EDF_TI , since the instance has been ûnished and its space in the

queue is now considered to be empty. A�er this has been done EDF_dequeue(EDF_Task_Queue &tq,

int[0, TASK_QUEUE_MAX] ti_pos) si�s through the queue a�er the deleted instance and shi�s up all
other instances to retain the consistency requirement up until the next NULL_EDF_TI is encountered,
marking the actual end of the queue.

To get the number of items currently in a queue, we start enumerating it beginning from the ûrst element,
up until we ûnd the ûrst occurrence of NULL_EDF_TI , and return the variable used for enumeration._e

queue that is enumerated is the one given as a reference argument to count_EDF_queue_items(EDF_Task

_Queue &tq) .

int[0, TASK_QUEUE_MAX + 1] count_EDF_queue_items(EDF_Task_Queue &tq) {
int[0, TASK_QUEUE_MAX + 1] i = 0;
while(i < TASK_QUEUE_MAX && tq[i] != NULL_EDF_TI)

i++;
5 return i;

}

// insert the given EDF task instance in the first free space
// in the given EDF task queue

10 void EDF_enqueue(EDF_Task_Queue &tq, EDF_Task_Instance &edf_ti) {
int[0, TASK_QUEUE_MAX + 1] i;
i = count_EDF_queue_items(tq);
tq[i] = edf_ti;

}
15

// dereference the given EDF task instance inside the queue and
// shift up the elements after it
void EDF_dequeue(EDF_Task_Queue &tq, int[0, TASK_QUEUE_MAX] ti_pos) {
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int[0, TASK_QUEUE_MAX] i = ti_pos;
20 tq[ti_pos] = NULL_EDF_TI;

while(i < (TASK_QUEUE_MAX - 1) && tq[i + 1] != NULL_EDF_TI) {
if(tq[i] == NULL_EDF_TI) {

tq[i] = tq[i + 1];
tq[i + 1] = NULL_EDF_TI;

25 }
i++;

}
}

Listing 4.3: Functions to manage and manipulate the EDF Task Queue

_e last function to be deûned for EDF-scheduled tasks in the global declarations is the scheduling
function. Since each task instance in the queue has information about its absolute deadline, the scheduling
function simply moves through the queue and returns the instance with the lowest absolute deadline,
that is, the next instance that needs to be ûnished. Should multiple instances have the same deadline,
the index of the ûrst one encountered is returned, which is the one with a lower index. _e function
EDF_schedule(EDF_Task_Queue &tq) does not return the instance, but rather its position in the task
queue. _is is due to a limitation in UPPAAL, which – while allowing references to be passed to a function
– does not allow a function to return a reference. A way to circumvent this would be to pass another
reference and set this to the selected instance, but both for consistency and compatibility reasons we chose
the approach of just returning the index in the queue.

// main scheduling function of EDF processing environments; selects the first
// instance in the given queue that has the lowest absolute deadline
int[0, TASK_QUEUE_MAX] EDF_schedule(EDF_Task_Queue &tq) {

EDF_Task_Instance next_eti = tq[0];
5 int[0, TASK_QUEUE_MAX] next_eti_pos = 0;

int[1, TASK_QUEUE_MAX + 1] i = 1;
// not run for empty queue due to tq[1] == NULL_EDF_TI
while(i < TASK_QUEUE_MAX && tq[i] != NULL_EDF_TI) {

if(tq[i].deadline < next_eti.deadline) {
10 next_eti = tq[i];

next_eti_pos = i;
}
i++;

}
15 return next_eti_pos;

}

Listing 4.4: Scheduling function for EDF Task Queues

For correctly handled, consistent queues, all of the functions introduced for EDF are bound by the
runtime complexity 𝒪(𝑛), with 𝑛 being the amount of elements in the queue.
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OSEK Scheduling
Most basic functions for OSEK scheduling can be easily transferred from their EDF counterparts. When
generating OSEK task instances, no additional scheduling parameter – like the absolute deadline in EDF –
is encodedwith the instance, since the priority is already part of the referenced OSEK_Task . For a complete
reference of the auxiliary and queue manipulation functions for OSEK, please see the relevant parts of
listing B.1.

_e only major change when dealing with OSEK scheduling is the scheduling given in listing 4.5. While
still mostly resembling the scheduling function for EDF given in listing 4.4, the attribute that is used for
scheduling now is not encoded in the checked OSEK_Task_Instance , but instead in the referenced
OSEK_Task . _is again highlights the diòerence in static and dynamic scheduling strategies as explained
in section 3.2.4. Like known from EDF, the queue is enumerated from the beginning, and the ûrst occur-
rence of a task with the highest priority is returned, in case of multiple instances with the same priority
the occurrence of the one with the lowest index.

// main scheduling function of OSEK processing environments; selects the first
// instance in the given queue that belongs to the task with the highest priority
// of all instances currently in the queue
int[0, TASK_QUEUE_MAX] OSEK_schedule(OSEK_Task_Queue &tq) {

5 OSEK_Task_Instance next_osek_ti = tq[0];
int[0, TASK_QUEUE_MAX] next_osek_ti_pos = 0;
int[1, TASK_QUEUE_MAX + 1] i = 1;
// not run for empty queue due to tq[1] == NULL_OSEK_TI
while(i < TASK_QUEUE_MAX && tq[i] != NULL_OSEK_TI) {

10 if(tq[i].osek_t.t_priority > next_osek_ti.osek_t.t_priority) {
next_osek_ti = tq[i];
next_osek_ti_pos = i;

}
i++;

15 }
return next_osek_ti_pos;

}

Listing 4.5: Scheduling function for OSEK Task Queues

For OSEK tasks, the runtime and space complexity classes equal those of their EDF counterparts. Since
OSEK task instances have one less attribute to encode, they require slightly less space, but that diòerence
is negligible.

4.3.2 Templates
Each automaton in UPPAAL is represented by a template, which deûnes the locations and edges including
all information typically represented in a timed automaton model. Additionally, each template has its own
declarations, which – similar to the global declarations – allow the deûnition of variables and functions,
although in function scope. Since edges in the template are allowed to use functions with the bool return
type as guards, and call any function in an update statement, the automata in UPPAAL can be setup to
simulate rather sophisticated behavior.
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An additional feature in UPPAAL is the parametrization of templates, such that a single template can
make use of given parameters, used as placeholders, so that it can be instantiated multiple times with
diòerent arguments. _is perfectly ûts our use case, such that using parametrizable templates, we only
need to create one processing environment template per amount of tasks run on the system and insert the
tasks dynamically using the parameters.

_e Automaton Template

Figure 4.5: Example of an EDF-scheduled process environment template with two tasks

_e templates itself don’t diòer based on the scheduling function used, only in the function declarations.
_is generic template shown in ûgure 4.5 calls the functions initialize() upon system initialization,
schedule() a�er each time step and idle() when leaving the Idle location.
For each task, there is a complex resembling the one detailed in ûgure 4.3. _is mostly works with
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the numerical task identiûers that were already mentioned, and calls the functions start_task(ID) ,
execute_task(ID) and finish_task(ID) as well as sending over the relevant broadcast channels
for the task ID.

It is worth noting that the automaton uses additional auxiliary locations compared to the one detailed in
ûgure 4.4, namely the Done, the Overload and the SchedulingError locations. _e ûrst two are the result of
limitations in UPPAAL, as both clock values and integer variables are limited by the int16 bounds of the
underlying C architecture, which amounts to 32767. _is means that neither a clock value, nor the value of
a local variable can rise above this bound. Since each automaton has the clock 𝑐, continuously counting the
local time, this bound eòectively limits the simulation steps possible. We have found a bound simulation
time suõcient for all systems we tested and since a limit on the time reduces the state space, setting it to
even lower values also means a faster veriûcation. _is is why the automata network, a�er having reached
the time set by the TIME_MAX constant, forces all automata to enter theDone location, eòectively reaching
a veriûable end condition.
As long as all possible variations possible occur at least once during the time speciûed by TIME_MAX ,

this is not an issue. For systems with very large, diòerent periods, issues can be encountered since not
all combinations might be part of the simulation and veriûcation process. Since this is a problem with
the underlying architecture, it cannot be ûxed trivially. A possible mitigation might be to introduce an
additional integer variable into the system and increment it at a ûxed interval, for example each 30000
time steps, resetting the clock in the process. _is allows to keep track of way larger time spans, but also
requires a lot of changes to the model.

_e Overload location is reached when the queue length in a system exceeds the value of the constant
TASK_QUEUE_OVERLOAD . _e recommended value for this is at least twice the amount of total tasks
available, since then we know that the system isn’t schedulable in all cases. Should the task queue contain at
least twice the amount of tasks on the processing environment, we know that – considering task instances
always ending with the task’s WCET as execution time – the task queue will be ûlled faster than it can be
worked oò, indicating a non-schedulable system.

_e SchedulingError location is only part of EDF and not of OSEK templates, as it indicates an error
regarding dynamic scheduling. _is location is entered when during EDF scheduling inside of the template,
the absolute deadline of a task instance cannot be met since it is in the past. When this state is encountered,
changes to the scheduling parameters of the EDF tasks need to be made to achieve a schedulable system.
All templates share common deûnitions as shown in listing 4.6, the two non-task clocks 𝑐 and tc, a

constant for the amount of tasks handled by the template, a variable saving the current local time and an
array of the contained task’s periods, used as triggers for adding them to the queue. In addition to these,
shorthands are deûned to access the next action, been determined by the scheduler, for the queue index of
the next task instance, the amount of task instances currently in the queue and the execution time of the
next task instance, along with the corresponding tasks’ WCET and BCET.

// declaration of clocks
clock c;
clock tc;
int[0, TIME_MAX] local_time;
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5

// declaration of basic scheduling parameters
EDF_Task_Queue tq;
const int [0, TASK_AMOUNT] TASK_COUNT = 2;
int[0, MAX_PERIOD] TG_triggers[TASK_COUNT] = { tasks[0].period, tasks[1].period };

10

// variables determined by scheduling
int[-3, TASK_AMOUNT] next;
int[0, TASK_QUEUE_MAX] next_ti_pos;
int[0, TASK_QUEUE_MAX] queue_item_count;

15 // shorthands for Template use
int[0, MAX_WCET] next_ti_et;
int[0, MAX_WCET] next_ti_WCET;
int[0, MAX_WCET] next_ti_BCET;

Listing 4.6: Deûnitions for all templates, example showing a EDF PE with two tasks

Not only deûnitions, but also some functions are common to all templates, which are listed in listing 4.7.
_e function fix_task_clocks() is the equivalent to themathematical operation used in the transition
out of the execution locations in ûgure 4.4. It resets all runtime clocks of the tasks that are currently not
running on the system, but uses a Boolean variable to check whether the clock shall be reset or not, since
the clock values cannot be accessed in update statements. During the startup phase, fix_all_clocks()
is called every tick to not only reset the runtime clocks, but also the data age clocks. _ere also is the
idle() function, which is called in the update directive when leaving the Idle location. It increases the
local_time variable to match the clock value, calls the aforementioned function to ûx the runtime
clocks and then calls the schedule() function to have the system determine the action for the next time
step.

void fix_task_clocks() {
// reset runtime clocks of tasks on this PE
// that are currently not running or suspended
for (i : int[0, TASK_COUNT - 1]) {

5 if(is_running[tasks[i].t.ID] == false) {
rt_c[tasks[i].t.ID] := 0;

}
}

}
10

void fix_all_clocks() {
// reset runtime and data age clocks of tasks
// on this PE continuously before starting
for (i : int[0, TASK_COUNT - 1]) {

15 if(is_running[tasks[i].t.ID] == false) {
rt_c[tasks[i].t.ID] := 0;
da_c[tasks[i].t.ID] := 0;

}
}

20 }
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void idle() {
// advance one step in time
local_time += TIME_STEP;

25 fix_task_clocks();
schedule();

}

Listing 4.7: Functions for all templates

EDF Scheduling
While the following functions are present in all templates, regardless of the scheduling algorithm used,
there are minor diòerences in the implementations because of diòerent data types. _is means that the
the following functions – while based on EDF scheduling – are mostly applicable for all templates; a full
reference can be found in section B.1.

_e initialize() function serves as a basic setup for the system required at the start of the PE
simulation. It calls the initialize_EDF_Task_Queue(EDF_Task_Queue &tq) function known from
listing 4.2 to setup the task queue, resets the value of the local_time variable to 0 to match the value of
the clock 𝑐 which is reset in the update transition, and calls the schedule() function to determine the
action for the next, the very ûrst, time step for this automaton.

_en there are the three task-dependent functions execute_task(int task_ID) ,
start_task(int task_ID) , and finish_task(int task_ID) , which all take the ID of the corre-
sponding task as parameter. Because of this parameter, task-speciûc behavior can be implemented by check-
ing for the task ID and taking appropriate actions in each of these functions. In the current implementation
start_task(int task_ID) just sets the token to not reset the runtime clock until the task is ûnished.
_e function execute_task(int task_ID) updates the execution time of the current task instance
and its shorthand, adjusts the local_time variable to match the main clock again and resets the runtime
clocks of non-running tasks. At the end of a task instance execution, finish_task(int task_ID) is
used to reset the token so that the runtime clock is correctly reset, and removes the ûnished task instance
from the queue.

void initialize() {
// initialize task queue and time
initialize_EDF_Task_Queue(tq);
local_time = 0;

5

schedule();
}

void start_task(int task_ID) {
10 is_running[task_ID] = true;

}

void execute_task(int task_ID) {
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// simulate running the task for one time step
15 // task-specific behavior can be implemented by checking for task ID

tq[next_ti_pos].et += TIME_STEP;
// update shorthand
next_ti_et = tq[next_ti_pos].et;
// advance one step in time

20 local_time += TIME_STEP;
fix_task_clocks();

}

void finish_task(int task_ID) {
25 // mark the end of task execution and dequeue the instance

is_running[task_ID] = false;
EDF_dequeue(tq, next_ti_pos);

}

Listing 4.8: Auxiliary functions in EDF Templates

A�er each time step, the schedule() function is called, which is responsible for a multitude of func-
tions.
First, it checks the period of the tasks simulated in the processing environment and adds task instances

to the queue which belong to tasks for which the time grid is met. _is is the main reason for needing
an additional local_time variable, as clock valuations cannot be checked against other variables using
mathematical operations, like the time grid triggers, neither can they be passed to other functions, like
when calling the function to generate a new EDF task instance.

Next, it calls the scheduling function known from listing 4.4 to determine the next task instance for
the processing environment and sets up the shorthands used in the template. _en it checks if one of the
three auxiliary locations needs to be entered; if the simulations has reached its end, the Done location is
entered, if the amount of items in the task queue is larger than allowed by TASK_QUEUE_OVERLOAD , the
Overload location is entered and if the deadline of the currently selected task instance is already in the past,
the SchedulingError location is entered.

void schedule() {
// generate and enqueue tasks for which the period is met
for (i : int[0, TASK_COUNT - 1]) {

if(local_time % TG_triggers[i] == 0) {
5 EDF_Task_Instance ti;

EDF_Task t = tasks[i];
ti = generate_EDF_Task_Instance(t, local_time);
EDF_enqueue(tq, ti);

}
10 }

// determine next task
next_ti_pos = EDF_schedule(tq);
next = tq[next_ti_pos].edf_t.t.ID;

15 next_ti_et = tq[next_ti_pos].et;
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next_ti_WCET = tq[next_ti_pos].edf_t.t.WCET;
next_ti_BCET = tq[next_ti_pos].edf_t.t.BCET;

// end simulation after the maximum simulation time is reached
20 if((local_time + clock_offset) >= TIME_MAX)

next = DONE;

// switch into overload mode (essentially deadlock)
// when the task queue is too full

25 queue_item_count = count_EDF_queue_items(tq);
if(queue_item_count > TASK_QUEUE_OVERLOAD)

next = OVERLOAD;

// detect a runtime scheduling error when a deadline is violated
30 if((next != IDLE) && (next != DONE) && (tq[next_ti_pos].deadline < local_time))

next = SCHED_ERR;
}

Listing 4.9: Scheduling function for EDF Templates

OSEK Scheduling
_e template code for OSEK scheduling is that already known of EDF scheduling, just with diòerent data
types and without the code to check for a scheduling error during runtime. Since there are no notable
diòerences this time around, other than the missing check for an already passed deadline, the relevant
code can be found in section B.1 and will not be listed here additionally.

4.3.3 System Declarations
_e system declarations are the last set of declarations in UPPAAL and are used to describe the system,
which is the network of timed automata that shall be simulated and veriûed. For this system, the process
environments need to be deûned by instantiating the relevant templates. _e instantiation of templates
works similar to the creation of objects in object-oriented languages, the parameters are given during
creation. A�er all templates have been instantiated, the simulatable system must be deûned using the
system directive and a comma-separated list of already created templates.

// Task definitions (ID, BCET, WCET)
const Task T1 = {1, 5, 6};
const Task T2 = {2, 8, 11};
const Task T3 = {3, 4, 6};

5 const Task T4 = {4, 4, 5};

// EDF Task Definitions (Task, relative Deadline, Period)
const EDF_Task ET1 = { T1, 8, 12 };
const EDF_Task ET4 = { T4, 14, 20 };

10

// OSEK Task Definitions (Task, Priority, Period)
const OSEK_Task OT2 = { T2, 2, 30 };
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const OSEK_Task OT3 = { T3, 3, 30 };

15 // Array Compositions
const EDF_Task PE1_Tasks[2] = { ET1, ET4 };
const OSEK_Task PE2_Tasks[2] = { OT2, OT3 };

// PE Definitions Template (Task Array, Offset to Reference PE)
20 PE1 = PE_2T_EDF(PE1_Tasks, 0);

PE2 = PE_2T_OSEK(PE2_Tasks, 2);

system PE1, PE2;

Listing 4.10: System declarations instantiating two processing environments with two tasks each

An example is given in listing 4.10; here, four tasks are created, two of them are embedded in EDF and
OSEK tasks each. In order to pass these tasks to the templates, they are comprised into arrays of their
respective data type. _en, the array containing the EDF tasks with the ID 1 and 4 is passed to the two-
task template for EDF, instantiating the reference system. A�er that, the OSEK tasks with ID 2 and 3 are
passed to a second processing environment template, instantiating an OSEK processing environment with
a clock oòset of 2 compared to the reference system. Both processing environments are then passed to
the system directive, so that they both will be part of the simulation. We will continue using this small
example in chapter 5 for example veriûcation queries.
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In chapter 4 we have built suitable for verifying the requirements speciûed in section 3.3. Using UPPAAL
and TCTL, which was introduced in section 2.2, allows us to determine whether the given requirements
are feasible for our system model or where inconsistencies occur.

To verify the requirements we will use queries to verify safety properties as mentioned in section 2.2,
which means that a single state in which the requirement is not met will cause it to be considered inconsis-
tent. We will use queries of the form ∀�𝑥 or in UPPAAL A[] x to ensure that the requirement 𝑥 always
holds.

Should UPPAAL ûnd a state in which the requirement is violated, we can get a full trace from the
beginning of the simulation up to the point in which the system of timed automata encountered the state
violating the requirement. UPPAAL supports this using the diagnostic trace, which – when a veriûcation
query is violated – saves the trace from the veriûcation utility to the simulator to review the current state
and the full path of transitions that lead to it. To enable this option, open Options Diagnostic Trace and
select either Some , Shortest or Fastest . _e traces given in the course of this thesis have been obtained
with the option set to Some .
All examples in this chapter build on the foundation of the small example system deûned in listing 4.10.

A more sophisticated, in-depth example will be given in chapter 6.
Due to the way the clocks in timed automata work, each runtime clock tc has a valuation of 𝑣(𝑐) ∈

[0,1] when the corresponding task’s simulation state is currently neither executing nor suspended. As a
consequence, we are unable to reliably check whether a task has actually just started execution based on
the runtime clocks and need to resort to the location names and the broadcast channels. Since UPPAAL
itself does not allow dynamic or parametrizable location names, this needs to be taken into account for
several veriûcation queries – this will be mentioned in the individual subsections.

5.1 Veriûcation of Properties Using TCTL
In this section, we will cover the requirements which we can verify using TCTL queries and a network of
timed automata representing processing environments. _e requirements covered here are requirements
over a single or over two functions.

We start with the maximum execution time of a function, proceed with the data age and then show how
to verify the periodicity requirement. In addition to the deûned requirements, we will show how to verify
whether a system is schedulable within the time bounds of the simulation and to check whether a task is
actually ever run.

5.1.1 Maximum Execution Time of a Function
Due to the existence of runtime clocks, themaximumexecution time of a function as deûned in section 3.3.1
can easily be veriûed.
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To check whether for a given system the execution time of a task 𝜏𝑛 implementing 𝑓𝑛 does not exceed a
given boundMET(𝑓𝑛), we can use the following TCTL query:

∀�𝜏𝑛rt ≤MET(𝑓𝑛)

As the UPPAAL model is time-bound by the constant TIME_MAX , we need to prepend a condition
to account for this upper bound. Otherwise a system state in which the requirement is not fulûlled can
always be found outside of the valid time bounds, as the automata enter theDone state and do not continue
resetting the clocks.

We have several clocks to choose from that can act as global clocks to compare to this time bound,mainly
the clock of the reference system and the runtime or data age clocks of task ID 0. Since the reference system
may be declaredwith varying names,we will use rt_c[0] as the global clock for the following veriûcation
queries.

We can then transfer the TCTL query almost exactly, prepending this condition to account for the time-
bound simulation. Assuming 𝜏𝑛 is represented using a task with the ID 𝑛 in the UPPAAL model, we use
query 5.1 to check for validity of the requirement.

A[] (rt_c[0] <= TIME_MAX) imply (rt_c[ 𝑛 ] <= MET(𝑓𝑛) )

Query 5.1: Veriûcation query to check whether MET(𝑓𝑛) holds true

For our example system, we can use the query rt_c[2] <= 11 here, which evaluates to true. Since the
task with the ID 2 has aWCET of 11 and the periods on the example systems do not lead to task preemption,
the execution time never rises above the WCET. Choosing any value lower than 11 here obviously results
in a veriûcation failure.

5.1.2 Maximum Data Age
Just likewith the function execution time, the veriûcation of the data age requirement from section 3.3.4was
made easy in the model-building process by introducing the relevant clocks. Assuming 𝑓𝑛 is implemented
by 𝜏𝑛 and 𝑓𝑚 is implemented by 𝜏𝑚, we can verify the maximum data age requirement MDA(𝑓𝑛, 𝑓𝑚) with
using this TCTL query:

∀�𝜏𝑚start→ 𝜏𝑛da ≤MDA(𝑓𝑛, 𝑓𝑚)

In UPPAAL,we need to know the task ID of 𝜏𝑛, which we will consider to be 𝑛 , as well as the processing
environment ID 𝑖 and the task array index 𝑗 of 𝜏𝑚 – note that the indexing starts at the value 1. With
this information, we can apply the template in query 5.2 to check whether MDA(𝑓𝑛, 𝑓𝑚) is upheld by the
given system.

A[] (PE 𝑖 .t 𝑗 _start imply (da_c[ 𝑛 ] <= MDA(𝑓𝑛, 𝑓𝑚) ))

Query 5.2: Veriûcation query to check whether MDA(𝑓𝑛, 𝑓𝑚) holds true

In ourexample,we could successfully checkMDA(𝑓1, 𝑓3) = 10using PE2.t2_start imply (da_c[1]

<= 10) , but trying the same with a value of 8 instead of 10 would fail.
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5.1.3 Periodicity
_e veriûcation of the periodicity requirement deûned in section 3.3.3 can be achieved easily as well, due
to the fact that the data age clock is reset in the time step a�er the ûnish state, not before. We can use the
following TCTL query to verify a periodicity requirement PER(𝑓𝑛):

∀�(𝜏𝑛 finish)→ 𝜏𝑛da ≤ RPT(𝑓𝑛)

In UPPAAL, this query can be used as shown in query 5.3. For this we need to know the task ID 𝑛 of
𝜏𝑛, as well as the processing environment ID 𝑖 and the task array index 𝑗 of this task.

A[] (PE 𝑖 .t 𝑗 _finish imply (da_c[ 𝑛 ] <= ( PER(𝑓𝑛) )))

Query 5.3: Veriûcation query to check whether PER(𝑓𝑛) holds true

For our example system, we would check PER(𝑓3) = 32 using the query A[] (PE2.t2_finish

imply (da_c[3] <= 32)) , which holds true. Note that the query A[] (PE2.t2_finish imply

(da_c[3] <= 30)) will fail although TG(𝜏3) = 30, due to the variable runtimes. If a task instance
ûnishes within its task’s BCET and the following instance ûnishes with the task’s WCET, the span checked
by PER(𝑓𝑛) is larger than the period of 𝜏𝑛.

5.1.4 Schedulability and Queue Overload
While not speciûcally a requirement, we can check whether a system might encounter an error during the
simulation, namely a runtime scheduling error or a queue overload. As mentioned in section 4.3.1, the task
queue of a system inUPPAAL cannot grow inûnitely large, but is boundby the constant TASK_QUEUE_MAX .
A processing environment automaton transitions to the overload state when the amount of instances in its
task queue rises above the threshold determined by the constant TASK_QUEUE_OVERLOAD . While this is
a limitation of the model, we have shown in section 4.3.2 that using the values proposed for the task queue
limits, depending on the total number of tasks in the simulation, this indicates a non-schedulable system.

To check whether this is the case for a given processing environment 𝑖 , the query shown in query 5.4
can be used.

A[] not PE 𝑖 .Overload

Query 5.4: Veriûcation query to check whether a processing environment is overloaded

A runtime scheduling error occurs when assumptions required for the correct functioning of a dynamic
scheduling implementation are violated. Since we assume scheduling implementations to be functionally
correct, such a scheduling error can only occur when the scheduling parameters are invalid or cannot
be applied to the current system. For the two scheduling strategies implemented, the only scheduling
error – apart from an ever-growing queue detected by the overload – that can occur during runtime is
when an EDF system’s local time is greater than any of the deadlines of task instances in the processing
environment’s queue. In hard real-time systems, which we are simulating, a passed deadline leads to a
system being classiûed as non-schedulable using the current scheduling parameters[15, 30].

Since this error is detected from inside the EDF templates as shown in section 4.3.1, an EDF scheduling
error can be detected using query 5.5 for an EDF processing environment automaton 𝑖 , which can be
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combined with the query for queue overload to query 5.6 to check for both missed deadlines as well as an
overly full queue.

A[] not PE 𝑖 .SchedulingError

Query 5.5: Veriûcation query to check whether an EDF processing environment encounters a schedul-
ing error

A[] not (PE 𝑖 .SchedulingError or PE 𝑖 .Overload)

Query 5.6: Veriûcation query to check whether an EDF processing environment does not encounter
an error during runtime

All auxiliary error states are states with no outgoing edges. While theDone state of a processing environ-
ment template can transition to itself, this is not possible in the error states. Since these error states are the
only states in the whole automaton without outgoing edges, we can also check whether it is possible for
the automaton to encounter a deadlock. To check whether a network of automata proceeds through the
whole bound simulation without the possibility of any automaton entering an error state, we use query 5.7
to check for deadlock-freeness.

A[] not deadlock

Query 5.7: Veriûcation query to check whether a network of automata is deadlock-free

5.1.5 Task Execution
To check whether a task instance is actually ever executed, we can use the following TCTL query:

∃�𝜏𝑛rt > tick

If there is a state in which 𝜏𝑛rt < [0, tick], we know that the task was executed at least once as there exists
at least one system state in which the corresponding runtime clock was not reset. Note that this only works
for WCET𝜏 > tick, otherwise we are confronted with the problem arising from the continuous increment
of clocks as detailed in section 4.2.2.

InUPPAAL, this TCTLquery can be transferred asQuery 5.8, an example again requiring the conditional
preûx known from section 5.1.1.

E[] (rt_c[0] <= TIME_MAX) and (rt_c[ 𝑛 ] > 1)

Query 5.8: Veriûcation query to check whether task 𝜏𝑛 is executed

5.2 Veriûcation Using Additional Automata and TCTL
Properties that require information about a time span rather than a single point in time or need to react
based on previous input or actions cannot be expressed using simple TCTL queries. All properties detailed
in section 5.1 expressed that either at a certain point in time or at all times the corresponding property must
hold. In this chapter, we will introduce additional automata into the simulated system to have the ability
to react to multiple events in a single veriûcation run, enabling state-aware veriûcation for our model.
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For the requirements covered in section 3.3, this is necessary to verify both the synchronization constraint
as well as the maximum reaction time requirement using our model. Note that both of these can range
over an arbitrary amount of functions and span multiple events over a time span. For both of these, there
exists no single event we could observe from which we could check whether the requirement is valid by
just using the TCTL subset as deûned in section 2.2.

In [1] where TCTL was originally introduced, the ability to limit the scope of temporal operators to
a certain time span, was introduced. As of now this has not been implemented in any model-checking
tool publicly available, which is why we will use the approach covered in this chapter to allow for these
requirements to be veriûed using UPPAAL.

We will create the templates for the veriûcation automata as parametrizable templates just like with the
automaton templates in section 4.3.2, to allow a fast instantiation of veriûcation automata using a set of
parameters deûning the requirement.

5.2.1 Synchronization
As per section 3.3.5, the synchronization requirement speciûes that a given set of tasks must ûnish within
a given time span, in any order. To verify these requirements, we introduce an automaton template with
an internal clock that starts counting when it receives a ûnish broadcast from any of the tasks in the given
set and only resumes its continuous clock resets when a ûnish broadcast from all other tasks in the set was
received. _e maximum allowed time span shall be given as parameter, such that it is available from inside
the automaton. With this available, the automaton can compare the current value of the internal clock to
the given requirement each tick and switch into an error state if its clock value is larger, since then not all
tasks ûnished within the given time span.

Given the template instantiation parameters const int[1, TASK_AMOUNT] t_id[n], const int

[0, MAX_PERIOD] sync_max with n = 2, a template for a synchronization automaton can be found in
ûgure 5.1, templates for the veriûcation of more than two tasks can be found in appendix B starting on
page XIV. _e code for the templates of synchronization automata can be found in listing 5.1. It is rather
short and requires only the change of a single constant TASK_COUNT in order to be adjusted to a diòerent
amount of tasks.

const int [0, TASK_AMOUNT] TASK_COUNT = 2;

clock c;
clock tc;

5 bool triggered[TASK_COUNT];

void trigger(int[0, TASK_COUNT] id) {
triggered[id] = true;

}
10

// return the total number of task finishes that were already triggered in this run
int[0, TASK_COUNT] count_triggered() {

int[0, TASK_COUNT] count = 0;
for (i : int[0, TASK_COUNT - 1]) {

15 if(triggered[i])
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count++;
}
return count;

}
20

// finish the run and reset all triggers
void reset_triggers() {

for (i : int[0, TASK_COUNT - 1]) {
triggered[i] = false;

25 }
}

Listing 5.1: Code for the two task synchronization template from ûgure 5.1

From its initial location, the automaton transitions to a committed location with four outgoing edges
once each tick. If the amount has not yet recorded a ûnish event in this run, the automaton returns to the
initial location, resetting both its internal clock 𝑐 as well as its tick clock tc. If at least one ûnish event has
occurred during this run, but the clock is still supposed to be increased since not all tasks corresponding
to the synchronization constraint have ûnished yet, the automaton also returns to the initial location, but
only resets its tick clock tc. Should the automatons internal clock already be above the threshold given by
the SYNC(𝑓1, 𝑓2) requirement, the automaton enters the Error location to indicate that the requirement is
not met.

Figure 5.1: Template of a synchronization automaton for two tasks
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When the automaton is in its initial location, it reacts to the broadcast on the channels belonging to
the tasks given as parameters. Each time such an event is recorded, the trigger(ID) function shown
in listing 5.1 is called, storing that the event has occurred. If this was the ûrst event recorded in the run,
the clock is reset to properly count the time since the ûrst occurrence and to avoid oò-by-one errors. If
this was the last event to be recorded in this run, the triggers are reset and the internal clock 𝑐 is reset as
well, marking the end of this run. If it is anything in between, the automaton transitions back to the initial
location without any updates or resets. Note that in the template shown in ûgure 5.1, this edge cannot be
taken, since for two tasks there cannot be anything between the other two edges. But for synchronization
automata with more than two tasks, this edge is important. An example automaton template for verifying
the synchronization of three tasks is shown in ûgure B.3.

To incorporate the synchronization automaton into the system, we need to instantiate the template and
append it to the system directive as shown in listing 5.2.

const int sync_t[2] = {2, 3};
sync1 = SYNC_2T(sync_t, 12);

system PE1, PE2, sync1;

Listing 5.2: Changes to the system declarations to incorporate the synchronization automaton

In the conûguration shown, the synchronization automaton checks whether the tasks with the tasks
with the IDs 2 and 3 always ûnish within a time range of 12 of each other and switches into the Error state
when this is not given. Because of that, we can simply check whether the requirement is upheld using the
following TCTL query:

A[] not sync1.Error

Query 5.9: Veriûcation query to check whether the synchronization requirement is upheld

Given the system from section 4.3.3 and the synchronization automaton instantiated in listing 5.2, this
query tells us that the property is satisûed. ReducingSYNC(𝑓2, 𝑓3) to the value 10 by setting sync1 = SYNC

_2T(sync_t, 10) , the query will fail.

5.2.2 Maximum Reaction Time of an Event Chain
Since event chains model a sequentially ordered set of events and we only consider task start and ûnish
events here, we can also create parametrizable templates for event chains. _e idea is to react to move
through the locations receiving the start and the ûnish events of the contained tasks. To actually catch all
valid �ows through the event chain, we introduce non-determinism, such that the event chain automaton
can switch to the start location from every other location using a non-guarded transition, resetting its
internal clock as well as its tick clock. As the automaton is required to transition when receiving on the
broadcast channel, and because the non-determinism introduces the ability for the automaton to always
return to its start location, veriûcation of the safety property using ∀� ensures that there is no single valid
event chain �ow that violates the requirement.
As parameters to the template, we can simply pass an array of numeric task IDs representing the tasks in

the order they appear in their event chain. For an event chain template of n tasks, we deûne the parameters
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as const int[1, TASK_AMOUNT] t_id[n] , for n = 3 the template would look like ûgure 5.2, other
examples can be found in appendix B, for example ûgure B.4. _e code of each event chain automaton
simply contains clock c; clock tc; and does not require any adjustments when changing the amount
of tasks. When the automaton is properly deûned, we can check for the MET requirement using the event
chain automatons internal clock.

Figure 5.2: Template to verify an event chain consisting of three tasks

𝑓1 𝑓2 𝑓4

𝑓1 𝑓3 𝑓4

Figure 5.3: Simple event chains constructed from the four given functions

Given the example system already deûned in section 4.3.3, we can construct two simple event chains
ec1 = ({𝑓1, 𝑓2, 𝑓4}),ec2 = ({𝑓1, 𝑓3, 𝑓4}), shown in ûgure 5.3. We construct the two event chain automata and
incorporate them into our system as shown in listing 5.3.

const int ec_v1[3] = {1, 2, 4};
const int ec_v2[3] = {1, 3, 4};
ec1 = EC_3T(ec_v1);
ec2 = EC_3T(ec_v2);

5

system PE1, PE2, ec1, ec2;

Listing 5.3: Changes to the system declarations to incorporate the event chain automata

We can now use a query as shown in query 5.10 to check whether each complete run of the event chain
was within the speciûed bounds.

A[] (ec1.Finish imply ec1.c <= MRT(ec1) )

Query 5.10: Veriûcation query to check whether MRT(ec1) is upheld

_is of course only works when the event chain does reach a ûnish state, which might not be true in
every case. An easy and fast query to check whether this happens is shown in Query 5.11, because of the
non-determinism E<> needs to be used instead of E[] .
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E<> ec1.Finish

Query 5.11: Veriûcation query to check whether ec1 ûnishes at least once

For our given example system, we can verify that the requirement MRT(𝑒𝑐2) = 60 holds true using the
query A[] (ec2.Finish imply ec2.c <= 60) . Using a value lower than 60 leads to a veriûcation
error indicating an inconsistency. For ec1 this limit is even higher as MRT(𝑒𝑐1) = 72 is the lower bound
for a consistent requirement given the example system.

5.3 Limitations of the Model and the Veriûcation
A�er having built a model in chapter 4 and having introduced how to verify the requirements introduced
in section 3.3 based on this model, we will assess the limitations that come with this proposed model.

5.3.1 Complexity
_eûrst problemwewill cover is complexity, which unfortunately is a problem common tomodel-checking
in general[16, 35]. For a single timed automaton, the veriûcation problem has been shown to be PSPACE-
complete[1]. _e PSPACE complexity class describes decision problems that can be solved by a Turing
machine using a polynomial amount of space[28].

_e veriûcation of a network of timed automata is done by computing the product automaton, applying
state reduction as well as various other optimization techniques and applying the veriûcation queries on
this single automaton[18]. Since we know that PSPACE =NPSPACE[44] and that the veriûcation problem
for a timed automaton is PSPACE-complete, we can deduce that the veriûcation of an arbitrarily large
network of timed automata is PSPACE-complete as well. _ere has been a lot of work on making the
veriûcation of timed automata and timed systems in general more eòective[5, 7], but PSPACE-complete
problems are known to not scale well. Reducing a PSPACE-complete problem like veriûcation in timed
automata to a problem of a lower complexity class would essentially mean to solve all problems in PSPACE
since they can be reduced to the PSPACE-complete problem[28].

_e model of processing environments proposed in chapter 4 has been built in a way to keep the state
space as small as possible. _e automata act deterministic and only use non-determinism for the ûnish
time of task instances to simulate variable execution times, but even this adds a non-negligible amount of
complexity to the model.

To at least partially mitigate this issue, we recommend reducing the deûned system on a per-query basis,
only introducing the automata into the system which aòect the result of the query. Since we only model
timing behavior and no interaction between systems, the processing environment automata act entirely
independent of each other. _is means that for each query, we only need to enable the automata which
contain parts of the property that is being veriûed.
For the maximum execution time and the periodicity we only need the one automaton representing the

single processing environment onwhich the corresponding task is run. For the veriûcation of themaximum
data age we need to simulate up to two processing environments, such that the tasks corresponding to the
functions in the MDA requirement are part of the system.

When verifying synchronization or maximum reaction time requirements, all processing environments
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which contain tasks of the corresponding function sets need to be modeled as well as the synchronization
or event chain automaton itself. Since the sets of functions for these requirements can grow arbitrarily
large, the system might eventually get too complex to model-check. For the examples used in this thesis
this turned out not to be a problem, but it is important to be aware of this possible issue when scaling this
approach to larger systems.

5.3.2 Event Chains on the same Processing Environment
When we verify the maximum runtime of an event chain, there are slight diòerences in how broadcasts are
handled in the veriûcation between consecutive tasks running on the same processing environment and
those running that are distributed to diòerent processing environments. Since the model checker always
assumes the worst possible case when verifying safety properties, the maximum runtime of a distributed
event chain is based on the assumption that should a task ûnish on one processing environment and the
consecutive task in the chain starts on another in the same time step, the second task broadcasts ûrst and
thus the event chain does not move forward two locations in this single time step.
When the consecutive functions are distributed to the same processing environment, this cannot be

achieved, since the simulation of the ûnishing taskmust be done before the start of the next instance can be
simulated. _is eòectively means that when the functions 𝑓1, 𝑓2 are implemented as tasks 𝜏1, 𝜏2 which are
deployed on the same processing environment pe1, an event chain automaton deûned for an event chain
composed of these two functions would receive both the task_finish[1]? and the task_start[2]?

broadcasts sequentially in one tick and transition over both edges accordingly.
_is is visualized in ûgure 5.4 using the functions 𝑓1, 𝑓2, 𝑓3, which we assume to be implemented by

𝜏1, 𝜏2, 𝜏3 respectively with 𝑇pe1 = {𝜏1, 𝜏2} and 𝑇pe1 = {𝜏3}. We can observe that at 𝑡2, both the ûnish and
the start event are considered to be part of the event chain �ow, since 𝜏1 and 𝜏2 are deployed on the same
processing environment and there is no way for 𝜏2 to broadcast its start before 𝜏1 broadcasts its ûnish
event – assuming that 𝜏2 does not preempt 𝜏1.

In 𝑡3, we have a similar situation, with tasks adjacent in the chain but distributed to diòerent processing
environments. Like deûned in section 3.1.2, the �ow does not include two event occurrences at the same
time here and instead the next occurrence of start𝑓3 , occurring at 𝑡4, is included in the �ow.
Although this violates the deûnition of an event �ow given in section 3.1.2, this can also be considered to

be a more accurate implementation of the behavior in distributed systems. When functions are deployed
to multiple processing environments, we can assume that data must be transferred in the actual imple-
mentation of the automotive so�ware system. Even if we assume that this data is sent and received in an
instant, a race conditionmight occur, a state in which it cannot be accurately predictedwhether the function
on the receiving processing environment started before or a�er receiving the data, eòectively creating an
unpredictable system[30]. For functions on the same processing environment this cannot happen, since
the data does not need to be transferred.
We will not consider it to be an actual error in the model, although it does violate the initial deûnition

of the event �ow, but it needs to be kept in mind when modelling and verifying systems. As will be seen in
section 6.2, this behavior is consistent with that of mature testing tools.

64 / 81



5 Veriûcation of Real-Time Requirements Using TCTL

Time
𝑡1 𝑡2 𝑡3 𝑡4 𝑡5

finish𝑓3

start𝑓3

finish𝑓2

start𝑓2

finish𝑓1

start𝑓1

Figure 5.4: Veriûcation of distributed event chains

5.4 Dealing with Infeasible Requirements
_e veriûcation method introduced in this chapter allows us to identify unrealizable requirements in
distributed automotive so�ware systems. Although actual solutions are unique to a system, we can give
general strategies that help in dealing with requirements that have been deemed inconsistent.

Should the maximum execution time of a function not be met, it might help to adjust the corresponding
task’s scheduling parameter to assign a higher priority. It could also be moved to a less utilized processing
environment to prevent frequent preemption.
Both of these are also valid strategies when the periodicity constraint of a function is not met, but in

this case, it might also help to adjust the time grid, since the periodicity is very dependent on the chosen
period.
When the maximum data age between two functions 𝑓1, 𝑓2 is violated, the easiest way to deal with

this would be to distribute the tasks to the same processing environment and to choose the scheduling
parameters in a way such that an instance of the task implementing 𝑓2 is run directly a�er an instance
of 𝑓1. Since this o�en is not possible, other ways to possibly reduce the data age would be to lower the
period of the task implementing 𝑓1 or to adjust the scheduling parameters in a way that both are run in
the same time grid, but each task instance of 𝜏2 runs a�er an instance of 𝜏1 in each period, which can be
achieved by assigning a relatively low priority to the task 𝜏2 implementing 𝑓2 and a high priority to the
task 𝜏1 implementing 𝑓1.

To achieve consistent synchronization of a set of functions and a maximum reaction time for an event
chain, no generalized approach can be given, as solutions are heavily dependent on both the systems and
the requirements deûned. If the requirements are not inconsistent according to section 3.3.6, it is possible
to create a system design consistent with these requirements.

It is worth noting that addressing some currently infeasible requirements might make it necessary to
temporarily invalidate other, currently consistent requirements. Development of consistent systems is thus
done in iterations, moving towards a ûnal system design in several steps, possibly invalidating previously
met requirements for several iterations in between to address others.
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Using the approach detailed in the previous two chapters, we will now perform a case study on a ûctional
brake-by-wire architecture.
We will start by outlining the example that will be used in this chapter and show how to formalize

this according to section 3.3. In the course of this chapter, we will iteratively alter this model, using the
developed UPPAAL model to assist in the development of a consistent system design to fulûll all given
requirements.

6.1 A Distributed Brake-by-Wire Function
_e example that we will use here is a ûctional brake-by-wire architecture, inspired by the example given
in [9]. A brake-by-wire system aims to replace the mechanical linkages between the driver and the vehi-
cle utilizing electronical systems[34]. _is would carry several beneûts, including ‘component reduction,
weight reduction, potential for improved vehicle performance, increased cabin space, removal of the steer-
ing column, ergonomic and crash compatible mounting of controls, complete access to vehicle dynamics
control, ‘plug, play and bolt’ modularity, so�ware upgrading, and potential for better fuel economy’ [34,
p. 3].
We introduce a ûctitious distributed function representing the so�ware of such a brake-by-wire archi-

tecture. From a high-level point of view, this distributed function works by periodically polling the angle
of the brake pedal to receive input from the driver, converting this to an amount of force to apply to the
brakes, applying additional assistance systems like electronic brakeforce distribution, and then activating
the corresponding actuators in the brakes with the desired force. Some of the assistance systems can be
enabled and disabled by the driver, which is why we additionally pull the conûguration data from the
system to determine which assistance systems shall be applied.

In addition to this driver-based brake routine, our system shall include an emergency brake assistant,
periodically analyzing data from various sensors of the car to detect an emergency, and activate the brake
actuators as fast as possible in case of a detected emergency, bypassing the assistance systems to prevent
any reduction of the brake force and instead only applying rudimentary stabilization measures.
A functional decomposition of our brake-by-wire architecture is shown in ûgure 6.1. For the functions

shown, we are given several real-time requirements which shall be fulûlled in the ûnal system:

• the function calculating the force that shall be applied to the brakes must always ûnish atmost 28ms

a�er it started and the calculations must be done at least every 40ms

• the sensor data used by the assistance systems may at most be 12ms old and the already pre-
processed data from the brake pedal may at most be 16ms old when the calculations of the brake
force start

• the driver-triggered brake routine, from the polling of the brake pedal angle to the ûnished activation
of the brake actuators, must always ûnish within 110ms
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• the path from the main brake controller calculating the brake force up to the ûnished activation of
the actuators may at most take 80ms and the input data to the function calculating the brake force
must always be from within a time frame of 10ms

• the emergency brake routine, from the polling of the sensor data up to the ûnished activation of the
brake actuators, must never surpass a total of 85ms

getBrakePedalData calculateDriverTorque

getSensorData calculateCurrentSpeed calculateBrakeForce applyAssistanceSystems applyBrakeForce

detectEmergency

getConûguration

Figure 6.1: Functional decomposition of our brake-by-wire architecture

In section 7.3, we have included variations of this functional decomposition where the relevant paths
mentioned here are highlighted. _e event chain for standard, driver-triggered braking is shown in ûg-
ure A.2, the one for the emergency brake routine in ûgure A.3 and the path from the main brake controller
to the brake actuators.

6.1.1 Initial Formalization
We start with the formalization by mapping the functions shown in ûgure 6.1 to tasks, estimating budgets
for their corresponding best-case and worst-case execution times. We assume that we have a homoge-
neous hardware architecture, where all tasks have a ûxed BCET and WCET regardless of the processing
environment they are currently deployed on.
Due towiring constraints,we assume each additional processing environment introduced into the system

to have a slight clock oòset of 1ms compared to the one added before, such that the oòset between two
processing environments pe𝑛,pe𝑚 can be calculated as co(pe𝑛,pe𝑚) =𝑚−𝑛ms, making the processing
environment with the lowest index the reference system.

_e requirements that were mentioned in the introduction to this section will be given to us in TADL2
format. A full listing of these can be found in listing A.3, which will be omitted here since all requirements
were alreadymentioned. To get a better overview about the three event chains deûned in these requirements,
we have visualized them in ûgure 6.2.

getBrakePedalData calculateDriverTorque calculateBrakeForce applyAssistanceSystems applyBrakeForce

getSensorData detectEmergency calculateBrakeForce applyBrakeForce

calculateBrakeForce applyAssistanceSystems applyBrakeForce

Figure 6.2: Event chains in the brake-by-wire architecture
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Task Function Name BCET WCET Explanation
𝜏1 getBrakePedalData 3 4 Receive and store information about the current

brake pedal angle
𝜏2 getSensorData 6 7 Receive and store information about the sensors

(accelero-, gyrometer, camera, ultrasonic sensor,
. . . )

𝜏3 getConûguration 3 5 Receive and store information about the
currently selected user options (engine
recuperation, assistance systems, . . . )

𝜏4 calculateDriverTorque 2 3 Calculate relative torque from brake pedal angle
𝜏5 calculateCurrentSpeed 8 10 Use stored sensor data to calculate the current

speed
𝜏6 detectEmergency 16 22 Use stored sensor data to detect whether an

emergency situation is imminent
𝜏7 calculateBrakeForce 19 26 Combine current information from the brake

pedal, sensors and settings to calculate the force
to apply to the brakes

𝜏8 applyAssistanceSystems 13 28 Apply enabled assistance systems based on
currently stored sensor data and already
calculated brake force

𝜏9 applyBrakeForce 7 9 Apply the ûnal result of the force calculation to
the brakes by activating the brake actuators

Table 6.1: Function mapping for our brake-by-wire architecture including estimated budgets

In order to be able to perform the veriûcation in the next steps, we need to import this task model into
UPPAAL. Apart from the task including their BCET andWCET budgets, we will also deûne the automata
necessary to verify the requirements imposed upon the event chain reaction time and the synchronization.
Now we are able to input this information in our UPPAAL system declarations as shown in listing 6.1.
Since the requirements and tasks are static, these automata are static as well and do not need to be adjusted
when changes are made to the system design later.

// Task definitions (ID, BCET, WCET)
const Task T1 = {1, 3, 4}; // getBrakePedalData
const Task T2 = {2, 6, 7}; // getSensorData
const Task T3 = {3, 3, 5}; // getConfiguration

5 const Task T4 = {4, 2, 3}; // calculateDriverTorque
const Task T5 = {5, 8, 10}; // calculateCurrentSpeed
const Task T6 = {6, 16, 22}; // detectEmergency
const Task T7 = {7, 19, 26}; // calculateBrakeForce
const Task T8 = {8, 13, 28}; // applyAssistanceSystems

10 const Task T9 = {9, 7, 9}; // applyBrakeForce

// Verification Automata
const int st1[3] = {3, 4, 5};
sync1 = SYNC_2T(st1, 10);

15
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const int ec_v1[5] = {1, 4, 7, 8, 9};
const int ec_v2[4] = {2, 6, 7, 9};
const int ec_v3[3] = {7, 8, 9};
ec1 = EC_5T(ec_v1);

20 ec2 = EC_4T(ec_v2);
ec3 = EC_3T(ec_v2);

Listing 6.1: UPPAAL declaration of the given tasks and veriûcation automata

Since we now have all deûnitions we need, we can start declaring processing environments and test the
systems in UPPAAL. We will do this in multiple iterations, starting with a ûrst concept and working our
way towards a fully consistent, feasible system model.

Our ûrst concept is composed of three processing environments, for which we split the tasks into the
groups 𝑇1 = {𝜏1, 𝜏4, 𝜏6, 𝜏9}, 𝑇2 = {𝜏2, 𝜏3, 𝜏7} and 𝑇3 = {𝜏5, 𝜏8}. Since the accumulated WCET of the task
sets is equal, we assign each task on each system the same period, just slightly over the total WCET the
set. We also determine a simple OSEK scheduler with the priorities set in the order of the IDs and gain the
system distribution as shown in ûgure 6.3.

pe1 (OSEK)

𝜏1
TG = 40
𝑝 = 4

𝜏4
TG = 40
𝑝 = 3

𝜏6
TG = 40
𝑝 = 2

𝜏9
TG = 40
𝑝 = 1

pe2 (OSEK)

𝜏2
TG = 40
𝑝 = 4

𝜏3
TG = 40
𝑝 = 3

𝜏7
TG = 40
𝑝 = 2

pe3 (OSEK)

𝜏5
TG = 40
𝑝 = 3

𝜏8
TG = 40
𝑝 = 2

co(c1,c2) = 1 co(c1,c3) = 2

Figure 6.3: Task distribution and scheduling information of the initial model

Entering this into our UPPAAL model is straightforward, the additions to the system declarations are
shown in listing 6.2. For veriûcation purposes, we only introduce the automata required for the relevant
queries into the system, as detailed in section 5.3.1. Because of this, the queries in table 6.2 have been
veriûed using at most four automata in the system at once; the three processing environments and one
veriûcation automaton, if needed. _e activated automata for each query are written as comments behind
each system directive. Note that the query preûx for the maximum execution time has been shortened
from A[] (rt_c[0] <= TIME_MAX) to A[] (...) to have a more compact and readable table.

// OSEK Task Definitions (Task, Priority, Period)
const OSEK_Task OT1 = { T1, 4, 40 };
const OSEK_Task OT2 = { T2, 3, 40 };
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const OSEK_Task OT3 = { T3, 2, 40 };
5 const OSEK_Task OT4 = { T4, 3, 40 };

const OSEK_Task OT5 = { T5, 2, 40 };
const OSEK_Task OT6 = { T6, 2, 40 };
const OSEK_Task OT7 = { T7, 1, 40 };
const OSEK_Task OT8 = { T8, 1, 40 };

10 const OSEK_Task OT9 = { T9, 1, 40 };

// Array Compositions
const OSEK_Task PE1_Tasks[4] = { OT1, OT4, OT6, OT9 };
const OSEK_Task PE2_Tasks[3] = { OT2, OT3, OT7 };

15 const OSEK_Task PE3_Tasks[2] = { OT5, OT8 };

// PE Definitions Template (Task Array, Offset to Reference PE)
PE1 = PE_4T_OSEK(PE1_Tasks, 0);
PE2 = PE_3T_OSEK(PE2_Tasks, 1);

20 PE3 = PE_2T_OSEK(PE3_Tasks, 2);

//system PE1, PE2, PE3; // Queries 1-4 (MET, PER, MDA)
//system PE1, PE2, PE3, ec1; // Query 5 (MRT(ec1))
//system PE1, PE2, ec2; // Query 6 (MRT(ec2))

25 //system PE1, PE2, PE3, ec3; // Query 7 (MRT(ec3))
system PE1, PE2, PE3, sync1; // Query 8 (SYNC)

Listing 6.2: UPPAAL declaration of the system shown in ûgure 6.3

Property UPPAAL Query Satisûed?
MET(𝑓7) = 28 A[] (...) imply (rt_c[7] <= 28) Ë
PER(𝑓7) = 40 A[] PE2.t3_finish imply (da_c[7] <= 4) é
MDA(𝑓2, 𝑓8) = 12 A[] PE3.t2_start imply (da_c[2] <= 12) Ë
MDA(𝑓4, 𝑓7) = 16 A[] PE2.t3_start imply (da_c[4] <= 16) Ë
MRT(ec1) = 110 A[] ec1.Finish imply ec1.c <= 110 é
MRT(ec2) = 85 A[] ec2.Finish imply ec2.c <= 85 é
MRT(ec3) = 80 A[] ec3.Finish imply ec3.c <= 80 é
SYNC(𝑓3, 𝑓4, 𝑓5) = 10 A[] not sync1.Error Ë

Table 6.2: Queries and their results for the system speciûed in ûgure 6.3

As can be seen in table 6.2, the speciûed system does hold up to the maximum execution time require-
ment on the calculateBrakeForce function as well as both data age and the synchronization requirement.
_e ûrst requirement is fulûlled because the system is designed in a way that no tasks are suspended and
can run freely once in their assigned time grid. _e other three requirements work because of the order
in which the tasks are actually run, based on the priorities assigned to them. Using the knowledge gained
from this example, we will start reûning our system until we gain a consistent design.

6.1.2 Enhancing the System
It is apparent that using just three processing environments, we won’t be able to satisfy all given real-time
requirements. Since 𝑓7 has both theMET(𝑓7) = 28 and PER(𝑓7) = 40 requirement with a WCET of 26,
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we will introduce the new processing environment pe4 with 𝑇4 = {𝜏7}, so that 𝜏7 is the sole task running
on this PE.

We look at ûgure 6.2 to determine the order in which the tasks would need to ûnish for the event chain
requirements to be met. As 𝜏8 has such a high worst-case execution time, we redistribute the tasks to be
able to let them run in a tighter time grid, leaving 𝜏8 as the sole to be the sole task on pe3. Since both 𝜏7 and
𝜏8 are running on their own PE, we want to ensure that 𝜏4 always starts a�er 𝜏1 in a single iteration and
that 𝜏9 starts at the beginning of an iteration in order to satisfy the constraint upon ec1. As both 𝜏9 and 𝜏1
are running on the same PE, we assign them the highest two priorities, with 𝜏9 being the highest-priority
task. _en, we assign 𝜏4 the lowest priority on its PE, such that the order is like that of the event chain.

_is at the same time should take care of theMDA(𝑓4, 𝑓7) requirement, and to satisfyMDA(𝑓2, 𝑓8) we
set the task priority of 𝜏2 to the lowest of its PE, so the time between its end and the start of 𝜏8 in the next
period is as small as possible. With these changes, we gain the model shown in ûgure 6.4, which can be
transferred to our UPPAAL as shown in listing A.4.

pe1 (OSEK)

𝜏9
TG = 30
𝑝 = 4

𝜏1
TG = 30
𝑝 = 3

𝜏5
TG = 30
𝑝 = 2

𝜏2
TG = 30
𝑝 = 1

pe2 (OSEK)

𝜏3
TG = 30
𝑝 = 3

𝜏6
TG = 30
𝑝 = 2

𝜏4
TG = 30
𝑝 = 1

pe3 (OSEK)

𝜏8
TG = 30
𝑝 = 1

pe4 (OSEK)

𝜏7
TG = 30
𝑝 = 1

co(c1,c2) = 1 co(c1,c3) = 2 co(c1,c4) = 3

Figure 6.4: Task distribution and scheduling information a�er the ûrst alterations

Property UPPAAL Query Satisûed?
MET(𝑓7) = 28 A[] (...) imply (rt_c[7] <= 28) Ë
PER(𝑓7) = 40 A[] PE4.t1_finish imply (da_c[7] <= 40) Ë
MDA(𝑓2, 𝑓8) = 12 A[] PE3.t1_start imply (da_c[2] <= 12) Ë
MDA(𝑓4, 𝑓7) = 16 A[] PE4.t1_start imply (da_c[4] <= 16) Ë
MRT(ec1) = 110 A[] ec1.Finish imply ec1.c <= 110 é
MRT(ec2) = 85 A[] ec2.Finish imply ec2.c <= 85 Ë
MRT(ec3) = 80 A[] ec3.Finish imply ec3.c <= 80 é
SYNC(𝑓3, 𝑓4, 𝑓5) = 10 A[] not sync1.Error é

Table 6.3: Queries and their results for the system speciûed in ûgure 6.4

When we run the queries again, we gain the results shown in table 6.3. In addition to the ûrst four
requirements, this new system also fulûlls theMRT(ec2) requirement. Unfortunately our alterations caused
the SYNC(𝑓3, 𝑓4, 𝑓5) requirement to not be fulûlled anymore.
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Using diagnostic traces, we obtain information about whyMRT(ec1) is not yet fulûlled, even though
we arranged the tasks to execute in the deûned order. We get a debug trace indicating that to satisfy this
requirement over ec1, we need to pay attention to the oòset between the processing environments. Because
𝜏8 on pe3 has a WCET of 28 and the PE has an oòset of two to the reference system, the data does not
arrive in time for the start of 𝜏9 on pe1, which is now the ûrst executed task there. Technically, both the
start of 𝜏9 and the ûnish of 𝜏8 lie on the same tick, but because of the behavior of event chains explained
in section 5.3.2, this does not contribute to a valid �ow. Swapping the tasks of pe2 and pe3 should enable
us to satisfy both MRT(ec3) and at the same timeMRT(ec1).

Since 𝜏6 has such a largeWCET and a large span between BCET andWCET, it is generally hard to predict
its behavior, making it diõcult to conform to the synchronization constraint. We introduce yet another
processing environment, pe4, and let 𝜏6 be the sole task on it. To have more ûne-grained control in regard
to the timing of the processing environments with multiple tasks, we let pe1 and pe3 be EDF-scheduled
from now on. We initially distribute the deadlines in a way that represent the current OSEK priorities.

_e last problem we need to deal with is the fact that the task 𝜏2 ûnishes too early in the period cycle,
we would rather have it very close to the end. We solve this by introducing a simple delay task 𝜏10 with
WCET𝜏10 = BCET𝜏10 = 13 and change the scheduling parameters such that it is the ûrst task of pe1 to run.
_is enables the full synchronization including 𝜏5 and also restores the validity of all chains that require
𝜏2.

_e task distribution shown in ûgure 6.5 shows the system design we arrive at, listing A.5 lists the system
declaration in UPPAAL. As can be seen in table 6.4, this system now fulûlls all requirements and all queries
succeed.

pe1 (EDF)

𝜏10
TG = 30
𝑑 = 15

𝜏5
TG = 30
𝑑 = 25

𝜏2
TG = 30
𝑑 = 30

pe2 (OSEK)

𝜏8
TG = 30
𝑝 = 1

pe3 (EDF)

𝜏9
TG = 15
𝑑 = 15

𝜏1
TG = 30
𝑑 = 15

𝜏3
TG = 30
𝑑 = 20

𝜏4
TG = 30
𝑑 = 25

pe4 (OSEK)

𝜏7
TG = 30
𝑝 = 1

pe5 (OSEK)

𝜏6
TG = 30
𝑝 = 1

co(c1,c2) = 1 co(c1,c3) = 2 co(c1,c4) = 3 co(c1,c5) = 4

Figure 6.5: Task distribution and scheduling information a�er the second round of enhancements

In just two iterations we reûned our initial model from ûgure 6.3 to a fully consistent system design,
adding two process environments as well as a delay task. Between these iterations, we have varied the
scheduling parameters heavily, showcasing possible solutions to problems that might occur. We have also
shown that in the enhancement of systems, some requirements that were previously valid will be – at least
temporarily – violated. Comparing the information about previous system designs with the current can
give hints on why that is the case and how this problem might be solved.
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Property UPPAAL Query Satisûed?
MET(𝑓7) = 28 A[] (...) imply (rt_c[7] <= 28) Ë
PER(𝑓7) = 40 A[] PE4.t1_finish imply (da_c[7] <= 40) Ë
MDA(𝑓2, 𝑓8) = 12 A[] PE2.t1_start imply (da_c[2] <= 12) Ë
MDA(𝑓4, 𝑓7) = 16 A[] PE4.t1_start imply (da_c[4] <= 16) Ë
MRT(ec1) = 110 A[] ec1.Finish imply ec1.c <= 110 Ë
MRT(ec2) = 85 A[] ec2.Finish imply ec2.c <= 85 Ë
MRT(ec3) = 80 A[] ec3.Finish imply ec3.c <= 80 Ë
SYNC(𝑓3, 𝑓4, 𝑓5) = 10 A[] not sync1.Error Ë

Table 6.4: Queries and their results for the system speciûed in ûgure 6.5

6.2 Comparison with SymTA/S
A tool to analyze timing in real-time automotive system using statistical analysis is SymTA/S, developed
by Symtavision, which is now part of Luxo�. SymTA/S is a tool for the ‘for a systematic description and
solution of integration tasks when it comes to timing-related issues’ [52]. It ‘generates a mathematical
model. A�er being solved quickly, it provides information about the system timing behavior, and identiûes
worst case conûguration parameters automatically.’ [52] Although the tool is mainly to be used in later
stages of development, where a lot more data is already available, it is possible to model systems using the
bare minimum of data available for scheduling analysis, which is the data we used as well.

To compare the result we got from our model to those that can be obtained using statistical analysis
in SymTA/S, we want to model our ûnal system design from ûgure 6.5, model it in the tool and compare
the results we obtain to those can get using our UPPAAL model. Unfortunately SymTA/S does not yet
implement an EDF scheduler, only the four OSEK variations ‘GenericOSEK, ERCOsek, RTAOSEK, Au-
tosarOS’ [54] of which GenericOSEK is comparable to the OSEK scheduler introduced in section 3.2.4
and implemented in section 4.3.1. Since the tool does not support the simulation of systems with 100%
utilization, we also had to slightly lower the worst-case execution times of the tasks to achieve a comparable
system. _e UPPAAL model that represents the system we used for the tests in SymTA/S can be found in
listing A.6; this system model will be used for the comparisons in this chapter. Given the deûned system,
a single time step in UPPAAL represents 1ms in SymTA/S, such that obtained results are arithmetically
comparable.

In SymTA/S, each task can be synchronized to a time source and can have an oòset assigned, relative
to this clock. To incorporate the oòsets between processing environments, we have deûned one global
reference clock in SymTA/S and manually given each task the oòset corresponding to the clock oòset of
the processing environment it belongs to in our model.

_e testing of the maximum execution time and periodicity requirements gave the exact results we
obtained using the veriûcation in UPPAAL. _e veriûcation of the maximum execution time as we deûned
it in section 3.3.1 is done by testing for themax. Eòective Execution Time in SymTA/S,which is another name
for the same concept, just like Gross Execution Time shown in ûgure 3.3. In addition to this requirement,
SymTA/S also allows testing for the minimum or maximum Total Load, Core Execution Time, Response
Time,Activation Distance, Start Distance and EndDistance[53]. Using the EndDistance, we could also easily
test for the periodicity requirement as introduced in ûgure 3.13, which also returned the expected result –
an indication that the requirement is met and the system passes the test.
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When testing for these two requirements using SymTA/S, the tool generates a textual response to indicate
whether the given system satisûed the constraint. In the case of a successful test, it provides several graphs
of timing-related properties, for example an indication of the distribution of a task’s execution time.

Using the implemented path system, it is possible to deûne event chains from a set of tasks. For these
paths, some constraints can be tested, which are called the ReactionSemantic,MaxAgeSemantic and Stric-
tOrder[55]. _e ûrst of these constraints allows us to determine the reaction time of event chains using
paths in SymTA/S. For successfully tested systems,Gantt charts for theworst-case analysis of such a reaction
time can be generated. An example is shown in ûgure 6.6, displaying the determined worst-case reaction
time for the path corresponding to ec1 in our model. For this worst-case analysis, the setting Full Oòset has
been used, which ‘considers oòsets in full accuracy and provides Gantt Charts’ [54]. _e documentation
warns that ‘[t]his can slow down the analysis and increase memory requirements of SymTA/S - especially
when many synchronized sources and many tasks are analyzed’ [54], hinting that similar problems might
be encountered compared to what we detailed in section 5.3.1 regarding our approach.
When we query the system deûned in listing A.6 for the maximum reaction time of ec1, we can go as

low asMRT(ec1) = 93 before the query is returned as invalid. We use the query forMRT(ec1) = 92 to get
a trace in order to obtain more information about this discrepancy.

With the ûrst clock in the vector being the global clock and the second one being the internal clock 𝑐 of
the event chain automaton and omitting the names of anonymous locations, we get the following trace:

· · · −→ ⟨Start,
(︁
8
1

)︁
⟩ task_start[1]?−−−−−−−−−−−−−−→

⟨(︁
8
0

)︁⟩ task_finish[1]?−−−−−−−−−−−−−−−→
⟨(︁

12
4

)︁⟩ task_start[4]?−−−−−−−−−−−−−−→
⟨(︁

15
17

)︁⟩
task_finish[4]?−−−−−−−−−−−−−−−→

⟨(︁
17
9

)︁⟩ task_start[7]?−−−−−−−−−−−−−−→
⟨(︁

33
25

)︁⟩ task_finish[7]?−−−−−−−−−−−−−−−→
⟨(︁

52
44

)︁⟩ task_start[8]?−−−−−−−−−−−−−−→
⟨(︁

61
53

)︁⟩
task_finish[8]?−−−−−−−−−−−−−−−→

⟨(︁
77
69

)︁⟩ task_start[9]?−−−−−−−−−−−−−−→
⟨(︁

92
84

)︁⟩ task_finish[9]?−−−−−−−−−−−−−−−→ ⟨Finish,
(︁
101
93

)︁
⟩ −→ ·· ·

_e reason for the diòerent result can be found in the diòerence in deûnitions between the worst-case
reaction time of paths in SymTA/S and the maximum reaction time as we deûned in section 3.3.2. In
SymTA/S, the reaction time is calculated from the point in time at which the task instance is inserted
into the queue. Since 𝜏1 = (𝑓1,3,4,𝑝 = 3) has a lower priority than the tasks 𝜏3 = (𝑓3,3,4,𝑝 = 2) and
𝜏4 = (𝑓4,2,3,𝑝 = 1), the task instance’s execution is not started until a�er these are run. Subtracting
their WCET from the result returned by SymTA/S, we arrive at an equivalent value compared to the value
obtained through the veriûcation using our model.
A similar case can be encountered when comparing the results for the worst-case reaction time analysis

of ec2 as shown in ûgure A.5. While the maximum reaction path determined by SymTA/S is 101ms long,
we obtain the result thatMRT(ec2) ≤ 80 and for the query attempting to verifyMRT(ec2) < 80we receive
the following trace:

· · · −→ ⟨Start,
(︁
21
1

)︁
⟩ task_start[2]?−−−−−−−−−−−−−−→

⟨(︁
21
0

)︁⟩ task_finish[2]?−−−−−−−−−−−−−−−→
⟨(︁

27
6

)︁⟩ task_start[6]?−−−−−−−−−−−−−−→
⟨(︁

34
13

)︁⟩
task_finish[6]?−−−−−−−−−−−−−−−→

⟨(︁
50
29

)︁⟩ task_start[7]?−−−−−−−−−−−−−−→
⟨(︁

63
42

)︁⟩ task_finish[7]?−−−−−−−−−−−−−−−→
⟨(︁

82
61

)︁⟩ task_start[9]?−−−−−−−−−−−−−−→
⟨(︁

92
71

)︁⟩
task_finish[9]?−−−−−−−−−−−−−−−→ ⟨Finish,

(︁
101
80

)︁
⟩ −→ ·· ·
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It is worth noting that the global clock has a value equal to the reaction time determined by SymTA/S,
indicating that both the UPPAAL model and SymTA/S analyzed the same �ow. _e trace we obtained
represents a �ow of the event chain with mixed BCET andWCET of the task instances that broadcasted
the corresponding events. Since the tasks 𝜏5 = (𝑓5,8,10,𝑝 = 2) and 𝜏10 = (delay,13,13,𝑝 = 3) are
deployed to the same system as 𝜏2 = (𝑓2,6,6,𝑝 = 1), these are executed ûrst due to the higher priority. If
we deduct their combined BCET from the value of the global clock, we obtain our result for theMRT of the
event chain. In this case, assuming the BCET of the tasks before 𝜏2 represents the worst case, as 𝜏5 starts
and ûnishes earlier while the next task in the chain, 𝜏6, does not, increasing the time spent in between
these two without executing anything relevant to this current event chain.

In addition to the reaction time of event chains, SymTA/S is also capable of determining the data age for
a given path using theMaxAgeSemantic. Diòerent to the deûnition in ûgure 3.15, SymTA/S measures data
age paths from the start of the ûrst task in the path to the end of the last task. To conform to our deûnition
of the data age in section 3.3.4, we create a path of two functions. An example of the data age analysis for
the requirement MDA(𝑓4, 𝑓7) can be found in ûgure 6.7. _e diòerence between the end of the ûrst task
and the start of the second is both calculated and also annotated, such that we can compare it to the result
we obtain using our model.
Although the tool gives 2 as the maximum delay in the path as shown in ûgure 6.7, we get a result where

the data age clock da_c[2] is at value 4. _is is because our model also considers the BCET instead of
only the WCET for the ûrst task, which can lead to an increased data age, as the execution time of the task
instance shi�s slightly, starting at an earlier point in time. Due to this the ûnish broadcast is being sent
earlier as well, resulting in a farther distance between the ûnish event of the ûrst function and the start
event of the second one. Due to the way that SymTA/S calculates the data age path, from the time that the
ûrst task has been added to the queue, including the BCET would not make a diòerence to their expected
result in this case.

_e tool unfortunately provides no way to check for the synchronization of tasks as deûned in sec-
tion 5.2.1. To summarize, using SymTA/S gives us identical or at least transferable results for tests that can
be performed. When tests successfully run through, the tool can generate a multitude of visualizations
including the Gantt charts for theWorst-Case of Event Chain Reaction Time or of the Data Age, for which
we have seen the embedded examples. In cases where the tests indicate an invalid system, an error mes-
sage is generated, showing which simulated ECU is overloaded and which tasks were problematic. When
such a test run ûnishes, no additional information about the system state is given and no Gantt charts are
generated for paths including tasks on overloaded systems.
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 Figure 6.6: Results of SymTA/S WCET evaluation of ec1
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Figure 6.7: Gantt chart from SymTA/S visualizing data age
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7 Conclusion

In this last part of this thesis, we will give a short summary of the previous chapters and our actual
realization of the approach, discussing to which extent the goals speciûed in section 1.2 were met, which
limitations the model currently exhibits and what prospects there are for future research.

7.1 Summary
During the course of this thesis, we have successfully developed an approach to verify the realizability of
real-time requirements. Figure 7.1 gives an overview of the developed work�ow.
We have successfully identiûed a multitude of inconsistencies in requirements that can be detected

during the planning phase in the process and have provided examples of contradictory requirements that
can already be detected using simple arithmetic. Examples of these inconsistencies include a requirement
for the synchronization of tasks which run in diòerent time grids and choosing a maximum reaction time
for an event chain that is smaller than the sum of the worst-case execution time of included tasks. _ese
can be considered to be design errors and do not require in-depth analysis to be discovered and corrected.

More intricate inconsistencies can be detected with just a set of requirements and a basic system design
consisting of estimated task budgets, scheduling parameters and a distribution of tasks to systems. In order
to do this, we have built a general model of timed automata and transferred this to UPPAAL to allow for
automated model-checking. We have shown how using this model, some requirements can be veriûed
using TCTL queries, and how some more sophisticated requirements can be checked with the help of
additional timed automata. _is automated approach allowed us to receive results that either indicate a
system that can be successfully integrated, or it reveals infeasibilities. In the case of a veriûcation failure,
the model-checker allows us to return a full trace, from the simulation start up to the point where it
encountered the system in a state where it violates the requirement. _is counter-example and the path
that led to it assists in the enhancement of the system design, allowing to create reûned systems consistent
with the requirements.

Input
Real-Time Requirements

(TADL2/TIMEX)

System Design

Formalization
Formalized

Requirements

Processing Environments
(Tasks, Clock, . . . )

Modelling

TCTL Queries

Timed Automata
for Veriûcation

Timed Automata
for Simulation

Veriûcation

Successful Veriûcation

Unsuccessful Veriûcation

UPPAAL Trace (.xtr)

Figure 7.1: Work�ow with the proposed approach

A case study was performed on the example of a brake-by-wire function, using the proposed approach to
get from an initial system model to a sound system distribution, consistent with the imposed requirements.
We compare some results we got from our approach to that obtained from the timing analysis tool SymTA/S,
which performs statistical analysis, detailing both the validity of the results as well as the applicability in
the planning stage.
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With regard to the last research question, at least a part of the proposed work�ow is automated of right
now, the veriûcation of the requirements. Using parametrizable templates in UPPAAL, we have allowed
for the easy and automatable creation of the proposed automata, since dynamic properties like arrays can
be inserted without requiring any alterations to the template. Considering ûgure 7.1, the whole work�ow
can be fully automated when a ûxed input format for the system designs can be guaranteed. Since we have
already used requirements in the form of TADL2 and all other steps in the work�ow up to the veriûcation
can be described by predetermined rules, this allows the whole work�ow to be automated. _e diagnostic
trace obtained from an unsuccessful query veriûcation is given in .xtr format representing a path in the
given automata. Given the system description, which was part of the input, it could also be transferred to
another part or visualized to allow easier access to the results.

7.2 Discussion
Existing tools used to test automotive so�ware systems are able to quite accurately simulate the system’s
behavior and o�en give very detailed results of tests in the form of exportable statistics and graphs. For
systems which cannot be successfully simulated or for requirements that are not fulûlled, these tools o�en
return only a very small set of information that could assist in the development of a reûned system model.

In contrast to this, using the model we developed allows us to obtain in-depth information in form of a
validation trace, when a requirement for a system is not met. While existing approaches are designed to
work with working systems, we consider a working system to be the ûnal state and only output information
indicating the validity of the requirement in this case. For systems for which inconsistencies are detected
given the requirements imposed upon them, we oòer the ability to obtain information about the case in
which such a con�ict is encountered, assisting in the development of a consistent system conforming to
the requirements.
Extending the proposed model is comparably easy, we have already shown how to implement both a

static as well as a dynamic scheduling strategy and introduced two clocks and corresponding locations
to assist in the veriûcation of the covered requirements. By adding clocks to capture the time between
occurrences of other events, as well as the implementation of supplementary task properties, the model
can be vastly extended to incorporate a large variety timing-related behavior and allow for a multitude
of additional requirements. With additional scheduling strategies, the simulation and veriûcation can be
expanded to a large variety of existing real-time systems.

It is worth noting that just because we ûnd a system to be consistent, this does not guarantee that the ûnal
system realized based on the veriûed system design can be integrated successfully. _ere are a multitude of
parameters aòecting large-scale automotive so�ware systems, only some of which can be predicted. Aside
from abiding to timing requirements, a real-time system also requires to perform functionally correct,
which requires a diòerent tool suite to assess.
Especially during the planning phase, a non-negligible numbers of parameters aòecting the ûnal system

is still unknown. Since our approach uses model-checking, the veriûcation is strict and manages to always
identify the worst-case situations. In the case of a veriûcation success, we can at least say that under the
given assumptions, the system should conform to the timing constraints, but cannot give a deûnite answer
or guarantee. When an inconsistency is encountered, though, we can unambiguously say that there are
issues in the system design that could lead to a violation of the constraints. _ese inconsistencies, when
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ignored at the planning stage, will most likely be need to be ûxed later in the process, such that we can
claim our approach to be a valuable addition to the process as a whole.

7.3 Prospects and Future Research
While we have met the goals in section 1.2, we can still identify a multitude of items that allow for future
research on the topic of this thesis. A trivial point is the addition of more requirements; while we have
already coveredmost of the requirements of TADL2 that deal with periodic functions, there are still several
le� that could also be veriûed. Some of these might require alterations to the model proposed in chapter 4
to gain access to even more in-depth timing information, like the ExecutionTimeConstraint of TADL2
which speciûed the maximum core execution time of a function, ignoring the time the implementing task
spends in suspended state.
A non-negligible property of actual distributed systems is clock dri�[30], which describes a synchro-

nization issue between clocks such that they will eventually get out of sync. _e clock dri� is usually so
slight that a second on one ECU might take a couple of nanoseconds more on another one, but even slight
dri� adds up over time. We can emulate the clock dri� over time by testing for a span of clock oòsets,
but actually simulating the clock oòset using our model is currently not possible. Since the clock dri� is
so small, we would need to represent the oòset using non-integer numbers, which is not possible in the
current deûnition of timed automata which require integers in the comparisons of clock constraints. In
the formal model we could simply multiply all guards by the same factor to achieve a model simulating
clock dri�, but since this still requires a small time step it would mean an enormous amount of possible
states. Due to the constraints of UPPAAL, namely the upper bound for clocks and variables deûned by
INT_MAX = 32767 , handling such a large state space is currently not possible in context of automated
model checking of timed automata.

In recent years many manufacturers of ECU have switched to a multi-core approach[24, 33, 46], where
each processor has multiple cores and allows for parallel execution. While we can to some extent model
these cores using multiple processing environments, this requires that each core has it’s own task queue,
which does not represent the behavior of real multi-core systems. In addition, other properties of multi-
core systems need to be considered; a processor with two cores usually doesn’t have a 100% increase in
processing power compared to a single core processor, which means that modelling both cores as separate
processing environments results in a model far away from being a representation of the real system.

Many tasks in automotive so�ware systems do not run periodically in a ûxed time grid, but are trig-
gered by events in a non-deterministic matter[42]. Using classic model-checking, these cannot be reliably
accounted for, since the worst case assumptions made in the process would be that the event is constantly
triggered, resulting in an extremely overloaded system, which is not even close to situations that occur
in real-world examinations. _ere are also propositions to only realize safety-critical using periodically
triggered tasks[23, 43], but as of right now, event-triggered tasks are considered to be an integral part of
automotive so�ware systems[42, 45]. Several approaches exist to apply statistical analysis to include these
type of tasks, and [29] uses the experimental statistic model-checking toolkit integrated in the current
UPPAAL development snapshots to verify such event properties inside UPPAAL. _e model given in [29]
is a very detailed representation of the system including a representation of the functional behavior in
addition to the timing properties and unfortunately not transferable to a general model, but such a model
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can be achieved using a similar development approach to the one we used.
To apply our approach to large-scale industrial processes and systemswith several hundred functions and

ECUs, the performance needs to be optimized heavily. In section 5.3.1 we have discussed the complexity of
this approach, becausemodel-checking over timed automata is used, the problemwas found to be PSPACE-
complete. Ways to mitigate this were covered in the same subsection, but when complex requirements like
the reaction time of an event chain need to be checked on very large systems, either another modelling
approach or an additional tool is required to perform a very optimized state reduction specially developed
for this use case.

81 / 81



Bibliography
[1] R. Alur, C. Courcoubetis, and D. Dill. ‘Model-checking for real-time systems’. In: Proceedings. Fi�h

Annual IEEE Symposium on Logic in Computer Science. Institute of Electrical and Electronics Engi-
neers (IEEE), 1990. doi: 10.1109/lics.1990.113766 (cit. on pp. 4, 11, 59, 63).

[2] Rajeev Alur and David Dill. ‘Automata for modeling real-time systems’. In: Automata, Languages
and Programming. Springer Nature, 1990, pp. 322–335. doi: 10.1007/bfb0032042 (cit. on pp. 4,
7).

[3] Rajeev Alur and David L. Dill. ‘A theory of timed automata’. In:_eoretical Computer Science 126.2
(Apr. 1994), pp. 183–235. doi: 10.1016/0304-3975(94)90010-8 (cit. on pp. 4, 7).

[4] AUTOSAR. Timing Analysis. Tech. rep. AUTOSAR, 2015 (cit. on pp. 4, 6, 12, 14).
[5] Johan Bengtsson. Reducing memory usage in symbolic state-space exploration for timed systems. Tech.

rep. 2001 (cit. on p. 63).
[6] Johan Bengtsson andWang Yi. ‘Timed Automata: Semantics, Algorithms and Tools’. In: Lectures on

Concurrency and Petri Nets. Springer Science + Business Media, 2004, pp. 87–124. doi: 10.1007/
978-3-540-27755-2_3 (cit. on pp. 4, 7, 11).

[7] Johan Bengtsson et al. ‘Partial order reductions for timed systems’. In: CONCUR’98 Concurrency
_eory: 9th International Conference Nice, France, September 8–11, 1998 Proceedings. Ed. by Davide
Sangiorgi and Robert de Simone. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 485–500.
isbn: 978-3-540-68455-8. doi: 10.1007/BFb0055643 (cit. on p. 63).

[8] Béatrice Bérard. ‘An Introduction to Timed Automata’. In: Lecture Notes in Control and Information
Sciences. Springer Science + Business Media, 2013, pp. 169–187. doi: 10.1007/978-1-4471-4276-
8_9 (cit. on p. 7).

[9] Hans Blom et al. Timing Model – Tools, algorithms, languages, methodology, USE cases. TIMMO-2-
USE Deliverable D11. Tech. rep. Version 1.2. Aug. 30, 2012 (cit. on pp. 4, 6, 12–14, 66).

[10] Jean-Louis Boulanger and Van Quang Dao. ‘Requirements engineering in a model-based method-
ology for embedded automotive so�ware’. In: 2008 IEEE International Conference on Research,
Innovation and Vision for the Future in Computing and Communication Technologies (June 7, 2017).
IEEE, 2008. doi: 10.1109/rivf.2008.4586365 (cit. on pp. 3, 5).

[11] Peter Braun et al. ‘Guiding requirements engineering for so�ware-intensive embedded systems in
the automotive industry’. In: Computer Science - Research and Development 29.1 (Oct. 2010), pp. 21–
43. doi: 10.1007/s00450-010-0136-y (cit. on pp. 1, 5).

[12] Manfred Broy. Automotive so�ware engineering. Ieee, 2003. isbn: 0-7695-1877-X (cit. on p. 1).
[13] Manfred Broy et al. ‘Engineering Automotive So�ware’. In: Proceedings of the IEEE 95.2 (Feb. 2007),

pp. 356–373. doi: 10.1109/jproc.2006.888386 (cit. on p. 1).
[14] R.W. Butler and G.B. Finelli. ‘_e infeasibility of quantifying the reliability of life-critical real-time

so�ware’. In: IEEE Transactions on So�ware Engineering 19.1 (1993), pp. 3–12. doi: 10.1109/32.
210303 (cit. on p. 1).

[15] Giorgio C. Buttazzo. Hard Real-Time Computing Systems. Springer US, 2011. doi: 10.1007/978-1-
4614-0676-1 (cit. on pp. 2, 24, 25, 57).

[16] Stephen A. Cook. ‘_e Complexity of _eorem-proving Procedures’. In: Proceedings of the _ird
Annual ACM Symposium on _eory of Computing. STOC ’71. Shaker Heights, Ohio, USA: ACM,
1971, pp. 151–158. doi: 10.1145/800157.805047 (cit. on p. 63).

I

https://doi.org/10.1109/lics.1990.113766
https://doi.org/10.1007/bfb0032042
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/BFb0055643
https://doi.org/10.1007/978-1-4471-4276-8_9
https://doi.org/10.1007/978-1-4471-4276-8_9
https://doi.org/10.1109/rivf.2008.4586365
https://doi.org/10.1007/s00450-010-0136-y
https://doi.org/10.1109/jproc.2006.888386
https://doi.org/10.1109/32.210303
https://doi.org/10.1109/32.210303
https://doi.org/10.1007/978-1-4614-0676-1
https://doi.org/10.1007/978-1-4614-0676-1
https://doi.org/10.1145/800157.805047


Bibliography

[17] T. Cucinotta et al. ‘A Real-Time Service-Oriented Architecture for Industrial Automation’. In: IEEE
Transactions on Industrial Informatics 5.3 (Aug. 2009), pp. 267–277. doi: 10.1109/tii.2009.
2027013 (cit. on p. 2).

[18] Alexandre David et al. ‘A Tool Architecture for the Next Generation of Uppaal’. In: Formal Methods
at the Crossroads. From Panacea to Foundational Support. Springer, 2002, pp. 352–366. isbn: 3-540-
20527-6 (cit. on p. 63).

[19] Elena Fersman et al. ‘Task automata: Schedulability, decidability and undecidability’. In: Information
and Computation 205.8 (Aug. 2007), pp. 1149–1172. doi: 10.1016/j.ic.2007.01.009 (cit. on
p. 5).

[20] Bastian Florentz. ‘So�ware and system architecture evaluation and analysis in the automotive do-
main’. PhD thesis. Technische Universität Braunschweig, 2008 (cit. on p. 1).

[21] Wang Yi, Paul Pettersson, and Mats Daniels. ‘Automatic Veriûcation of Real-Time Communicating
Systems By Constraint-Solving’. In: (1994). Ed. by Dieter Hogrefe and Stefan Leue, pp. 223–238
(cit. on pp. 5, 7).

[22] Patrick Frey. ‘A timing model for real-time control-systems and its application on simulation and
monitoring ofAUTOSAR systems’. PhD thesis. UniversitätUlm, 2011. doi: 10.18725/OPARU-1743
(cit. on pp. 2, 5).

[23] Jelena Frtunikj. ‘Safety framework and platform for functions of future automotive E/E systems’. In:
Automotive and Engine Technology (July 2016). doi: 10.1007/s41104-016-0007-z (cit. on pp. 1,
80).

[24] _omas Fuhrman et al. ‘On Designing So�ware Architectures for Next-Generation Multi-Core
ECUs’. In: SAE Int. J. Passeng. Cars – Electron. Electr. Syst. 8 (Apr. 2015), pp. 115–123. doi: 10.4271/
2015-01-0177 (cit. on p. 80).

[25] D.D. Gajski and F. Vahid. ‘Speciûcation and design of embedded hardware-so�ware systems’. In:
IEEE Design & Test of Computers 12.1 (1995), pp. 53–67. doi: 10.1109/54.350695 (cit. on p. 1).

[26] GLIWA GmbH. ‘Timing Poster’. In: Poster. Feb. 20, 2013 (cit. on p. 19).

[27] _omas Herpel. ‘Performance Evaluation of Time-Critical Data Transmission in Automotive Com-
munication Systems. Leistungsbewertung zeitkritischer Datenübertragung in automobilen Kommu-
nikationssystemen’. PhD thesis. Friedrich-Alexander-Universität Erlangen-Nürnberg, 2009 (cit. on
p. 5).

[28] John Hopcro�, Wolfgang Paul, and Leslie Valiant. ‘On Time Versus Space’. In: J. ACM 24.2 (Apr.
1977), pp. 332–337. issn: 0004-5411. doi: 10.1145/322003.322015 (cit. on p. 63).

[29] Jin Hyun Kim et al. ‘Formal Analysis and Testing of Real-Time Automotive Systems Using UPPAAL
Tools’. In: Formal Methods for Industrial Critical Systems. Springer International Publishing, 2015,
pp. 47–61. doi: 10.1007/978-3-319-19458-5_4 (cit. on pp. 5, 80).

[30] Hermann Kopetz. Real-Time Systems. Springer US, 2011. doi: 10.1007/978-1-4419-8237-7
(cit. on pp. 33, 57, 64, 80).

[31] Stefan Kugele. ‘Model-BasedDevelopment of So�ware-intensive Automotive Systems’. Dissertation.
München: Technische Universität München, 2012 (cit. on p. 5).

[32] J.H. Lala and R.E. Harper. ‘Architectural principles for safety-critical real-time applications’. In:
Proceedings of the IEEE 82.1 (1994), pp. 25–40. doi: 10.1109/5.259424 (cit. on p. 1).

II

https://doi.org/10.1109/tii.2009.2027013
https://doi.org/10.1109/tii.2009.2027013
https://doi.org/10.1016/j.ic.2007.01.009
https://doi.org/10.18725/OPARU-1743
https://doi.org/10.1007/s41104-016-0007-z
https://doi.org/10.4271/2015-01-0177
https://doi.org/10.4271/2015-01-0177
https://doi.org/10.1109/54.350695
https://doi.org/10.1145/322003.322015
https://doi.org/10.1007/978-3-319-19458-5_4
https://doi.org/10.1007/978-1-4419-8237-7
https://doi.org/10.1109/5.259424


Bibliography

[33] Patrick Leteinturier, Simon Brewerton, and Klaus Scheibert. ‘MultiCore Beneûts & Challenges for
Automotive Applications’. In: SAE Technical Paper. SAE International, Apr. 2008. doi: 10.4271/
2008-01-0989 (cit. on p. 80).

[34] Chris Line, Chris Manzie, and Malcolm Good. ‘Control of an Electromechanical Brake for Auto-
motive Brake-By-Wire Systems with an Adapted Motion Control Architecture’. In: SAE Technical
Paper Series. SAE International, May 2004. doi: 10.4271/2004-01-2050 (cit. on p. 66).

[35] Kenneth Lauchlin McMillan. ‘Symbolic Model Checking: An Approach to the State Explosion
Problem’. UMI Order No. GAX92-24209. PhD thesis. Pittsburgh, PA, USA, 1992 (cit. on p. 63).

[36] Robin Milner. A Calculus of Communicating Systems. Ed. by Robin Milner. Springer Berlin Heidel-
berg, 1980. doi: 10.1007/3-540-10235-3 (cit. on p. 9).

[37] Jürgen Mössinger et al. ‘Autosar – a Worldwide Standard Is on the Road’. In: (June 7, 2017). 2009
(cit. on p. 1).

[38] C. Norstrom, A. Wall, and Wang Yi. ‘Timed Automata as Task Models for Event-Driven Systems’.
In: Proceedings Sixth International Conference on Real-Time Computing Systems and Applications.
RTCSA’99 (Cat. No.PR00306). Institute of Electrical and Electronics Engineers (IEEE), 1999. doi:
10.1109/rtcsa.1999.811218 (cit. on p. 4).

[39] OSEK. OSEK/VDX Operating System Speciûcation. Ed. by OSEK. 2005 (cit. on p. 24).

[40] Alexander Pretschner et al. ‘So�ware Engineering for Automotive Systems: A Roadmap’. In: Future
of So�ware Engineering (FOSE ’07) (June 7, 2017). IEEE, May 2007. doi: 10.1109/fose.2007.22
(cit. on p. 1).

[41] V. Ratan et al. ‘Safety analysis tools for requirements speciûcations’. In: Proceedings of 11th Annual
Conference onComputerAssurance. COMPASS ’96 (June 8,2017). IEEE, 1996.doi: 10.1109/cmpass.
1996.507883 (cit. on p. 4).

[42] Achim Rettberg et al., eds. Analysis, Architectures and Modelling of Embedded Systems. Springer
Berlin Heidelberg, 2009. doi: 10.1007/978-3-642-04284-3 (cit. on pp. 25, 80).

[43] Florian Sagstetter. ‘Schedule Synthesis for Time-Triggered Automotive Architectures’. Dissertation.
München: Technische Universität München, 2016 (cit. on pp. 5, 80).

[44] Walter J. Savitch. ‘Relationships between nondeterministic and deterministic tape complexities’.
In: Journal of Computer and System Sciences 4.2 (1970), pp. 177–192. issn: 0022-0000. doi: http:
//dx.doi.org/10.1016/S0022-0000(70)80006-X (cit. on p. 63).

[45] Oliver Scheickl. ‘TimingConstraints inDistributedDevelopment ofAutomotive Real-time Systems’.
Dissertation. München: Technische Universität München, 2011 (cit. on pp. 2, 5, 14, 80).

[46] Rolf Schneider, Simon Brewerton, and Denis Eberhard. ‘Multicore vs Safety’. In: SAE Technical
Paper. SAE International, Apr. 2010. doi: 10.4271/2010-01-0207 (cit. on p. 80).

[47] M. Shaw et al. ‘Abstractions for so�ware architecture and tools to support them’. In: IEEE Trans-
actions on So�ware Engineering 21.4 (Apr. 1995), pp. 314–335. doi: 10.1109/32.385970 (cit. on
p. 4).

[48] K.G. Shin and P. Ramanathan. ‘Real-time computing: a new discipline of computer science and
engineering’. In: Proceedings of the IEEE 82.1 (1994), pp. 6–24. doi: 10.1109/5.259423 (cit. on
p. 1).

[49] Friedhelm Stappert. Managing in-car timing constraints. TIMMO Innovation Report. Tech. rep. 2009
(cit. on p. 2).

III

https://doi.org/10.4271/2008-01-0989
https://doi.org/10.4271/2008-01-0989
https://doi.org/10.4271/2004-01-2050
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1109/rtcsa.1999.811218
https://doi.org/10.1109/fose.2007.22
https://doi.org/10.1109/cmpass.1996.507883
https://doi.org/10.1109/cmpass.1996.507883
https://doi.org/10.1007/978-3-642-04284-3
https://doi.org/http://dx.doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/http://dx.doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.4271/2010-01-0207
https://doi.org/10.1109/32.385970
https://doi.org/10.1109/5.259423


Bibliography

[50] Friedhelm Stappert et al. ‘A Design Framework for End-To-End Timing Constrained Automotive
Applications’. In: Embedded Real-Time So�ware and Systems. 2010 (cit. on p. 6).

[51] N. Stoimenov, S. Perathoner, and L. _iele. ‘Reliable mode changes in real-time systems with ûxed
priority or EDF scheduling’. In: 2009 Design, Automation & Test in Europe Conference & Exhibition
(June 12, 2017). IEEE, Apr. 2009. doi: 10.1109/date.2009.5090640 (cit. on p. 25).

[52] Symtavision GmbH. Analysis Introduction and _eory. Symbolic Timing Analysis for Systems User
Documentation - Version 4.0.0. 2017 (cit. on pp. 5, 73).

[53] Symtavision GmbH.Main. Symbolic Timing Analysis for Systems User Documentation - Version 4.0.0.
2017 (cit. on p. 73).

[54] Symtavision GmbH. OSEK. Symbolic Timing Analysis for Systems User Documentation - Version
4.0.0. 2017 (cit. on pp. 73, 74).

[55] Symtavision GmbH. System Distribution. Symbolic Timing Analysis for Systems User Documentation
- Version 4.0.0. 2017 (cit. on p. 74).

[56] G. Tassey. _e Economic Impacts of Inadequate Infrastructure for So�ware Testing. Diane Publishing
Company, 2002. isbn: 9780756726188 (cit. on p. 3).

[57] H. _ane and H. Hansson. ‘Testing distributed real-time systems’. In:Microprocessors and Microsys-
tems 24.9 (Feb. 2001), pp. 463–478. doi: 10.1016/s0141- 9331(00)00099- 5 (cit. on pp. 2,
5).

[58] V-MODELL®AUTHORS. V-Modell XT. Fundamentals of the V-Modell XT, Version 1.3. 2006 (cit. on
p. 3).

[59] Verein zur Weiterentwicklung des V-Modell XT e.V. (Weit e.V.) Das V-Modell XT. Das deutsche
Referenzmodell für Systementwicklungsprojekte, Version 2.1. Apr. 20, 2017 (cit. on p. 3).

[60] Justyna Zander-Nowicka. ‘Model-based testing of real-time embedded systems in the automotive
domain’. PhD thesis. Technische Universität Berlin, 2009. doi: 10.14279/depositonce-2126
(cit. on p. 5).

IV

https://doi.org/10.1109/date.2009.5090640
https://doi.org/10.1016/s0141-9331(00)00099-5
https://doi.org/10.14279/depositonce-2126


Appendix

List of Symbols

𝒞 set of clocks in a timed automaton

𝑣 clock valuation

ℬ(𝒞) set of clock constraints

ℬ′(𝒞) downwards closed set of clock constraints

𝒜 timed automaton

𝑐 clock of a timed automaton

𝑁 set of locations in a timed automaton

𝑙0 initial location of a timed automaton

𝐸 set of edges of a timed automaton

𝐼 invariant function of a timed automaton

𝜆 timed trace

𝑎! output action (broadcast emission) in a network of timed automata

𝑎? input action (broadcast reception) in a network of timed automata

𝜂 internal action in a network of timed automata

∀� always globally operator in TCTL

∀♦ always ûnally operator in TCTL

∃� exists globally operator in TCTL

∃♦ exists ûnally operator in TCTL

𝜑→ 𝜓 implication operator in TCTL

N set of natural numbers (o�en used as indices)

N0 set of natural numbers including 0

R set of real numbers

R
+ set of positive real numbers

R
+
0 set of non-negative real numbers

𝑒 event

𝑜 event occurrence

ec event chain
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ef(ec, 𝑡) event �ow through event chain ec with stimulus occurring at 𝑡

𝑓 function

pe processing environment

𝜏 task

𝑇pe set of tasks on the processing environment pe

TG(𝜏) time grid assigned to task 𝜏

TQpe task queue of processing environment pe

cpe clock of processing environment pe

Sch(TQ) generic scheduling function applied to task queue TQ

𝑓𝜏 function 𝑓 implemented by task 𝜏

BCET𝜏 best-case execution time of task 𝜏

WCET𝜏 worst-case execution time of task 𝜏

𝐴𝜏 scheduling parameter of task 𝜏

𝑖 task instance

𝑠𝑖 start time of a task instance 𝑖

et Execution time of a task instance

co(c1,c2) clock oòset between the clocks c1,c2

OSEK(TQ) OSEK scheduling function

𝑃 priority of OSEK tasks

EDF(TQ) EDF scheduling function

𝐷 relative deadline of EDF tasks

𝑑 absolute deadline of EDF task instances

MET(𝑓 ) maximum execution time requirement for function 𝑓

MRT(ec) maximum reaction time requirement for event chain ec

PER(𝑓 ) periodicity requirement for function 𝑓

MDA(𝑓1, 𝑓2) maximum data age requirement for function pair 𝑓1, 𝑓2

SYNC(𝑓1, . . . , 𝑓𝑛) synchronization requirement for functions 𝑓1, . . . , 𝑓𝑛
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Referenced Material

const int INT_MAX = 32767; // from C's limits.h

// Bounds for manual adjustment; choose as low as possible to reduce state space

5 // time at which the simulation shall be stopped
const int TIME_MAX = 10000;
// 'tick rate' of the simulation; setting this to anything
// other than 1 might cause undesired behavior
const int TIME_STEP = 1;

10 // largest clock offset between the reference system and another
const int MAX_OFFSET = 10;

// amount of tasks to be simulated (should be exact, but
// must at least be equal to number of different tasks)

15 const int TASK_AMOUNT = 10;
// accounts for NULL_TASK blocking the first ID and task IDs starting with 1
const int TASK_ID_MAX = TASK_AMOUNT + 1;

// maximum WCET of a single task
20 const int MAX_WCET = 50;

// maximum relative deadline of an EDF task
// (the absolute deadline is bound by TIME_MAX + MAX_REAL_DEADLINE)
const int MAX_REL_DEADLINE = 100;
// upper bound for priorities of an OSEK task

25 // (using TASK_ID_MAX here allows setting a unique priority for each task)
const int MAX_T_PRIORITY = TASK_ID_MAX;
// maximum period for a single task
const int MAX_PERIOD = TIME_MAX - 1;

30 // hard limit for the amount of tasks in the queue,
// simulation/verification crashes when this is surpassed
const int TASK_QUEUE_MAX = 3 * TASK_AMOUNT;
// amount of items that are permitted in the task queue
// before the automaton transitions to the OVERLOAD location

35 const int TASK_QUEUE_OVERLOAD = 2 * TASK_AMOUNT;

ListingA.1: Constants in UPPAAL Global declarations

// define 'NULL' values for types, since 'NULL' doesn't exist in UPPAAL (yet)
const Task NULL_TASK = { 0, 0, 0 };
const EDF_Task NULL_EDF_T = { NULL_TASK, 0, 0 };
const OSEK_Task NULL_OSEK_T = { NULL_TASK, 0, 0 };

5 const EDF_Task_Instance NULL_EDF_TI = { NULL_EDF_T, 0, 0, 0 };
const OSEK_Task_Instance NULL_OSEK_TI = { NULL_OSEK_T, 0, 0 };

// automaton state helpers
const int IDLE = 0;

10 const int DONE = -1;
const int OVERLOAD = -2;
const int SCHED_ERR = -3;

ListingA.2: Additional deûnitions in UPPAAL Global declarations
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getBrakePedalData calculateDriverTorque

getSensorData calculateCurrentSpeed calculateBrakeForce applyAssistanceSystems applyBrakeForce

detectEmergency

getConûguration

FigureA.2: Standard brake routine of the brake-by-wire architecture introduced in section 6.1

getBrakePedalData calculateDriverTorque

getSensorData calculateCurrentSpeed calculateBrakeForce applyAssistanceSystems applyBrakeForce

detectEmergency

getConûguration

FigureA.3: Emergency brake routine of the brake-by-wire architecture introduced in section 6.1

getBrakePedalData calculateDriverTorque

getSensorData calculateCurrentSpeed calculateBrakeForce applyAssistanceSystems applyBrakeForce

detectEmergency

getConûguration

FigureA.4: Path of functions from the main brake controller to the brake actuators in the brake-by-wire
architecture introduced in section 6.1
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...

DelayConstraint brakeCalculationDelay {
source calculateBrakeForceStart,

5 target calculateBrakeForceFinish,
upper = (28 ms on universal_time)

}

RepeatConstraint periodicBrakeInput {
10 event calculateBrakeInputFinish,

upper = (40 ms on universal_time)
}

AgeConstraint driverTorqueDataAge {
15 scope = driverTorqueDataChain,

minimum = 0,
maximum = (16 ms on universal_time)

}

20 AgeConstraint assistiveSensorDataAge {
scope = assistiveSensorDataChain,
minimum = 0,
maximum = (12 ms on universal_time)

}
25

ReactionConstraint standardBrakeConstraint {
scope = standardBrakeFunction,
upper = (110 ms on universal_time)

}
30

ReactionConstraint emergencyBrakeConstraint {
scope = emergencyBrakeFunction,
upper = (85 ms on universal_time)

}
35

ReactionConstraint mainBrakeConstraint {
scope = mainBrakeChain,
upper = (80 ms on universal_time)

}
40

SynchronizationConstraint syncInputCalculations {
events calculateDriverTorqueFinish, calculateCurrentSpeedFinish, getConfigurationFinish
tolerance = (10 ms on universal_time)

}

ListingA.3: Requirements for the example in chapter 6 in TADL2 format

// OSEK Task Definitions (Task, Priority, Period)
const OSEK_Task OT1 = { T1, 3, 30 };
const OSEK_Task OT2 = { T2, 1, 30 };
const OSEK_Task OT3 = { T3, 3, 30 };

5 const OSEK_Task OT4 = { T4, 1, 30 };
const OSEK_Task OT5 = { T5, 2, 30 };
const OSEK_Task OT6 = { T6, 2, 30 };
const OSEK_Task OT7 = { T7, 1, 30 };

X
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const OSEK_Task OT8 = { T8, 1, 30 };
10 const OSEK_Task OT9 = { T9, 4, 30 };

// Array Compositions
const OSEK_Task PE1_Tasks[4] = { OT1, OT2, OT5, OT9 };
const OSEK_Task PE2_Tasks[3] = { OT3, OT4, OT6 };

15 const OSEK_Task PE3_Tasks[1] = { OT8 };
const OSEK_Task PE4_Tasks[1] = { OT7 };

// PE Definitions Template (Task Array, Offset to Reference PE)
PE1 = PE_4T_OSEK(PE1_Tasks, 0);

20 PE2 = PE_3T_OSEK(PE2_Tasks, 1);
PE3 = PE_1T_OSEK(PE3_Tasks, 2);
PE4 = PE_1T_OSEK(PE4_Tasks, 3);

//system PE4; // Queries 1, 2 (MET, PER)
25 //system PE1, PE3; // Query 3 (MDA(f2,f8))

//system PE2, PE4; // Query 4 (MDA(f4,f7))
//system PE1, PE2, PE3, PE4, ec1; // Query 5 (MRT(ec1))
//system PE1, PE2, PE4, ec2; // Query 6 (MRT(ec2))
//system PE1, PE3, PE4, ec3; // Query 7 (MRT(ec3))

30 //system PE1, PE2, PE3, sync1; // Query 8 (SYNC)

ListingA.4: UPPAAL declaration of the system shown in ûgure 6.4

const Task T10 = {10, 13, 13}; // delayTask

// EDF Task Definitions (Task, relative Deadline, Period)
const EDF_Task ET1 = { T1, 15, 30 };

5 const EDF_Task ET2 = { T2, 30, 30 };
const EDF_Task ET3 = { T3, 20, 30 };
const EDF_Task ET4 = { T4, 25, 30 };
const EDF_Task ET5 = { T5, 25, 30 };
const EDF_Task ET9 = { T9, 15, 15 };

10 const EDF_Task ET10 = { T10, 15, 30 };

// OSEK Task Definitions (Task, Priority, Period)
const OSEK_Task OT6 = { T6, 1, 30 };
const OSEK_Task OT7 = { T7, 1, 30 };

15 const OSEK_Task OT8 = { T8, 1, 30 };

// Array Compositions
const EDF_Task PE1_Tasks[3] = { ET2, ET5, ET10 };
const OSEK_Task PE2_Tasks[1] = { OT8 };

20 const EDF_Task PE3_Tasks[4] = { ET1, ET3, ET4, ET9 };
const OSEK_Task PE4_Tasks[1] = { OT7 };
const OSEK_Task PE5_Tasks[1] = { OT6 };

// PE Definitions Template (Task Array, Offset to Reference PE)
25 PE1 = PE_3T_EDF(PE1_Tasks, 0);

PE2 = PE_1T_OSEK(PE2_Tasks, 1);
PE3 = PE_4T_EDF(PE3_Tasks, 2);
PE4 = PE_1T_OSEK(PE4_Tasks, 3);
PE5 = PE_1T_OSEK(PE5_Tasks, 4);

30
//system PE4; // Queries 1 & 2
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//system PE1, PE2; // Query 3
//system PE3, PE4; // Query 4
//system PE2, PE3, PE4, ec1; // Query 5

35 //system PE1, PE3, PE4, PE5, ec2; // Query 6
//system PE2, PE3, PE4, ec3; // Query 7
//system PE1, PE3, sync1; // Query 8

ListingA.5: UPPAAL declaration of the system shown in ûgure 6.5

// Task definitions (ID, BCET, WCET)
const Task T1 = {1, 3, 4}; // getBrakePedalData
const Task T2 = {2, 6, 6}; // getSensorData
const Task T3 = {3, 3, 4}; // getConfiguration

5 const Task T4 = {4, 2, 3}; // calculateDriverTorque
const Task T5 = {5, 8, 10}; // calculateCurrentSpeed
const Task T6 = {6, 16, 22}; // detectEmergency
const Task T7 = {7, 19, 25}; // calculateBrakeForce
const Task T8 = {8, 13, 28}; // applyAssistanceSystems

10 const Task T9 = {9, 7, 9}; // applyBrakeForce
const Task T10 = {10, 13, 13}; // delayTask

// OSEK Task Definitions (Task, Priority, Period)
const OSEK_Task OT1 = { T1, 3, 30 };

15 const OSEK_Task OT2 = { T2, 1, 30 };
const OSEK_Task OT3 = { T3, 2, 30 };
const OSEK_Task OT4 = { T4, 1, 30 };
const OSEK_Task OT5 = { T5, 2, 30 };
const OSEK_Task OT6 = { T6, 1, 30 };

20 const OSEK_Task OT7 = { T7, 1, 30 };
const OSEK_Task OT8 = { T8, 1, 30 };
const OSEK_Task OT9 = { T9, 4, 15 };
const OSEK_Task OT10 = { T10, 3, 30 };

25 // Array Compositions
const OSEK_Task PE1_Tasks[3] = { OT2, OT5, OT10 };
const OSEK_Task PE2_Tasks[1] = { OT8 };
const OSEK_Task PE3_Tasks[4] = { OT1, OT3, OT4, OT9 };
const OSEK_Task PE4_Tasks[1] = { OT7 };

30 const OSEK_Task PE5_Tasks[1] = { OT6 };

// PE Definitions Template (Task Array, Offset to Reference PE)
PE1 = PE_3T_OSEK(PE1_Tasks, 0);
PE2 = PE_1T_OSEK(PE2_Tasks, 1);

35 PE3 = PE_4T_OSEK(PE3_Tasks, 2);
PE4 = PE_1T_OSEK(PE4_Tasks, 3);
PE5 = PE_1T_OSEK(PE5_Tasks, 4);

ListingA.6: UPPAAL declaration of the system equivalent to the one modeled in SymTA/S
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p
 
 

 FigureA.5: SymTA/S WCET Gantt chart for ec2
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Code Listings and Templates
B.1 Full Code Listings

const int INT_MAX = 32767; // from C's limits.h

// Bounds for manual adjustment; choose as low as possible to reduce state space

5 // time at which the simulation shall be stopped
const int TIME_MAX = 10000;
// 'tick rate' of the simulation; setting this to anything
// other than 1 might cause undesired behavior
const int TIME_STEP = 1;

10 // largest clock offset between the reference system and another
const int MAX_OFFSET = 10;

// amount of tasks to be simulated (should be exact, but
// must at least be equal to number of different tasks)

15 const int TASK_AMOUNT = 10;
// accounts for NULL_TASK blocking the first ID and task IDs starting with 1
const int TASK_ID_MAX = TASK_AMOUNT + 1;

// maximum WCET of a single task
20 const int MAX_WCET = 50;

// maximum relative deadline of an EDF task
// (the absolute deadline is bound by TIME_MAX + MAX_REAL_DEADLINE)
const int MAX_REL_DEADLINE = 100;
// upper bound for priorities of an OSEK task

25 // (using TASK_ID_MAX here allows setting a unique priority for each task)
const int MAX_T_PRIORITY = TASK_ID_MAX;
// maximum period for a single task
const int MAX_PERIOD = TIME_MAX - 1;

30 // hard limit for the amount of tasks in the queue,
// simulation/verification crashes when this is surpassed
const int TASK_QUEUE_MAX = 3 * TASK_AMOUNT;
// amount of items that are permitted in the task queue
// before the automaton transitions to the OVERLOAD location

35 const int TASK_QUEUE_OVERLOAD = 2 * TASK_AMOUNT;

///////////////////
// Type Definitions
///////////////////

40 typedef struct
{

int[0, TASK_ID_MAX] ID;
int[0, MAX_WCET] BCET;
int[0, MAX_WCET] WCET;

45 } Task;

typedef struct
{

Task t;
50 int[0, MAX_REL_DEADLINE] rel_deadline;

int[0, MAX_PERIOD] period;
} EDF_Task;

typedef struct
55 {

Task t;
int[0, MAX_T_PRIORITY] t_priority;
int[0, MAX_PERIOD] period;

} OSEK_Task;
60

typedef struct
{

EDF_Task edf_t;
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int[0, TIME_MAX + MAX_REL_DEADLINE] deadline;
65 int[0, TIME_MAX] start;

int[0, MAX_WCET] et;
} EDF_Task_Instance;

typedef struct
70 {

OSEK_Task osek_t;
int[0, TIME_MAX] start;
int[0, MAX_WCET] et;

} OSEK_Task_Instance;
75

typedef EDF_Task_Instance EDF_Task_Queue[TASK_QUEUE_MAX];
typedef OSEK_Task_Instance OSEK_Task_Queue[TASK_QUEUE_MAX];

// define 'NULL' values for types, since 'NULL' doesn't exist in UPPAAL (yet)
80 const Task NULL_TASK = { 0, 0, 0 };

const EDF_Task NULL_EDF_T = { NULL_TASK, 0, 0 };
const OSEK_Task NULL_OSEK_T = { NULL_TASK, 0, 0 };
const EDF_Task_Instance NULL_EDF_TI = { NULL_EDF_T, 0, 0, 0 };
const OSEK_Task_Instance NULL_OSEK_TI = { NULL_OSEK_T, 0, 0 };

85

// automaton state helpers
const int IDLE = 0;
const int DONE = -1;
const int OVERLOAD = -2;

90 const int SCHED_ERR = -3;

// verification helpers (clocks and channels for start/end events)
clock rt_t[TASK_ID_MAX];
clock da_t[TASK_ID_MAX];

95 bool is_running[TASK_ID_MAX];
broadcast chan task_start[TASK_ID_MAX];
broadcast chan task_finish[TASK_ID_MAX];

/////////////////
100 // EDF Scheduling

/////////////////
EDF_Task generate_EDF_Task(Task &t, int rel_deadline, int period) {

EDF_Task new_task = { t, rel_deadline, period };
return new_task;

105 }

// create an EDF task instance with a deadline based on the current time
EDF_Task_Instance generate_EDF_Task_Instance(EDF_Task &edf_t, int local_time) {

EDF_Task_Instance new_ti = { edf_t, local_time + edf_t.rel_deadline, local_time, 0 };
110 return new_ti;

}

// fill the EDF task queue given as a reference parameter with null values
void initialize_EDF_Task_Queue(EDF_Task_Queue &tq) {

115 for (i : int[0, TASK_QUEUE_MAX - 1]) {
tq[i] = NULL_EDF_TI;

}
}

120 int[0, TASK_QUEUE_MAX + 1] count_EDF_queue_items(EDF_Task_Queue &tq) {
int[0, TASK_QUEUE_MAX + 1] i = 0;
while(i < TASK_QUEUE_MAX && tq[i] != NULL_EDF_TI)

i++;
return i;

125 }

// insert the given EDF task instance in the first free space in the given EDF task queue
void EDF_enqueue(EDF_Task_Queue &tq, EDF_Task_Instance &edf_ti) {

int[0, TASK_QUEUE_MAX + 1] i;
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130 i = count_EDF_queue_items(tq);
tq[i] = edf_ti;

}

// dereference the given EDF task instance inside the queue and shift up
135 // the elements after it, if necessary

void EDF_dequeue(EDF_Task_Queue &tq, int[0, TASK_QUEUE_MAX] ti_pos) {
int[0, TASK_QUEUE_MAX] i = ti_pos;
tq[ti_pos] = NULL_EDF_TI;
while(i < (TASK_QUEUE_MAX - 1) && tq[i + 1] != NULL_EDF_TI) {

140 if(tq[i] == NULL_EDF_TI) {
tq[i] = tq[i + 1];
tq[i + 1] = NULL_EDF_TI;

}
i++;

145 }
}

// main scheduling function of EDF processing environments; selects the first instance
// in the given queue that has the lowest absolute deadline

150 int[0, TASK_QUEUE_MAX] EDF_schedule(EDF_Task_Queue &tq) {
EDF_Task_Instance next_eti = tq[0];
int[0, TASK_QUEUE_MAX] next_eti_pos = 0;
int[1, TASK_QUEUE_MAX + 1] i = 1;
// not run for empty queue due to tq[1] == NULL_EDF_TI

155 while(i < TASK_QUEUE_MAX && tq[i] != NULL_EDF_TI) {
if(tq[i].deadline < next_eti.deadline) {

next_eti = tq[i];
next_eti_pos = i;

}
160 i++;

}
return next_eti_pos;

}

165 //////////////////
// OSEK Scheduling
//////////////////
OSEK_Task generate_OSEK_Task(Task &t, int tpriority, int period) {

OSEK_Task new_task = { t, tpriority, period };
170 return new_task;

}

OSEK_Task_Instance generate_OSEK_Task_Instance(OSEK_Task &ot, int local_time) {
OSEK_Task_Instance new_task_instance = { ot, local_time, 0 };

175 return new_task_instance;
}

// fill the OSEK task queue given as a reference parameter with null values
void initialize_OSEK_Task_Queue(OSEK_Task_Queue &tq) {

180 for (i : int[0, TASK_QUEUE_MAX - 1]) {
tq[i] = NULL_OSEK_TI;

}
}

185 int[0, TASK_QUEUE_MAX + 1] count_OSEK_queue_items(OSEK_Task_Queue &tq) {
int[0, TASK_QUEUE_MAX + 1] i = 0;
while(i < TASK_QUEUE_MAX && tq[i] != NULL_OSEK_TI)

i++;
return i;

190 }

// insert the given OSEK task instance in the first free space in the given OSEK task queue
void OSEK_enqueue(OSEK_Task_Queue &tq, OSEK_Task_Instance &osek_ti) {

int[0, TASK_QUEUE_MAX + 1] i;
195 i = count_OSEK_queue_items(tq);
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tq[i] = osek_ti;
}

// dereference the given OSEK task instance inside the queue and shift up
200 // the elements after it, if necessary

void OSEK_dequeue(OSEK_Task_Queue &tq, int[0, TASK_QUEUE_MAX] ti_pos) {
int[0, TASK_QUEUE_MAX + 1] i = ti_pos;
tq[ti_pos] = NULL_OSEK_TI;
while(i < (TASK_QUEUE_MAX - 1) && tq[i + 1] != NULL_OSEK_TI) {

205 if(tq[i] == NULL_OSEK_TI) {
tq[i] = tq[i + 1];
tq[i + 1] = NULL_OSEK_TI;

}
i++;

210 }
}

// main scheduling function of OSEK processing environments; selects the first instance
// in the given queue that belongs to the task with the highest priority of all instances

215 // currently in the queue
int[0, TASK_QUEUE_MAX] OSEK_schedule(OSEK_Task_Queue &tq) {

OSEK_Task_Instance next_osek_ti = tq[0];
int[0, TASK_QUEUE_MAX] next_osek_ti_pos = 0;
int[1, TASK_QUEUE_MAX + 1] i = 1;

220 // not run for empty queue due to tq[1] == NULL_OSEK_TI
while(i < TASK_QUEUE_MAX && tq[i] != NULL_OSEK_TI) {

if(tq[i].osek_t.t_priority > next_osek_ti.osek_t.t_priority) {
next_osek_ti = tq[i];
next_osek_ti_pos = i;

225 }
i++;

}
return next_osek_ti_pos;

}

Listing B.1: Global Declarations for UPPAAL model

// EDF scheduled Processing Environment with three Tasks
// Parameters:
// EDF_Task tasks[3]: Array of three EDF tasks
// int clock_offset: Clock offset relative to reference PE

5

// declaration of clocks
clock c;
clock tc;
int[0, TIME_MAX] local_time;

10

// declaration of basic scheduling parameters
EDF_Task_Queue tq;
const int [0, TASK_AMOUNT] TASK_COUNT = 3;
int[0, MAX_PERIOD] TG_triggers[TASK_COUNT] = { tasks[0].period, tasks[1].period, tasks[2].period };

15

// variables determined by scheduling
int[-3, TASK_AMOUNT] next;
int[0, TASK_QUEUE_MAX] next_ti_pos;
int[0, TASK_QUEUE_MAX] queue_item_count;

20 // shorthands for Template use
int[0, MAX_WCET] next_ti_et;
int[0, MAX_WCET] next_ti_WCET;
int[0, MAX_WCET] next_ti_BCET;

25 void fix_task_clocks() {
// reset runtime clocks of tasks on this PE that are currently
// not running or suspended
for (i : int[0, TASK_COUNT - 1]) {
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if(is_running[tasks[i].t.ID] == false) {
30 rt_c[tasks[i].t.ID] := 0;

}
}

}

35 void fix_all_clocks() {
// reset runtime and data age clocks of tasks on this PE continuously
// before starting
for (i : int[0, TASK_COUNT - 1]) {

if(is_running[tasks[i].t.ID] == false) {
40 rt_c[tasks[i].t.ID] := 0;

da_c[tasks[i].t.ID] := 0;
}

}
}

45

void schedule() {
// generate and enqueue tasks for which the period is met
for (i : int[0, TASK_COUNT - 1]) {

if(local_time % TG_triggers[i] == 0) {
50 EDF_Task_Instance ti;

EDF_Task t = tasks[i];
ti = generate_EDF_Task_Instance(t, local_time);
EDF_enqueue(tq, ti);

}
55 }

// determine next task
next_ti_pos = EDF_schedule(tq);
next = tq[next_ti_pos].edf_t.t.ID;

60 next_ti_et = tq[next_ti_pos].et;
next_ti_WCET = tq[next_ti_pos].edf_t.t.WCET;
next_ti_BCET = tq[next_ti_pos].edf_t.t.BCET;

// end simulation after the maximum simulation time is reached
65 if((local_time + clock_offset) >= TIME_MAX)

next = DONE;

// switch into overload mode (essentially deadlock)
// when the task queue is too full

70 queue_item_count = count_EDF_queue_items(tq);
if(queue_item_count > TASK_QUEUE_OVERLOAD)

next = OVERLOAD;

// detect a runtime scheduling error when a deadline is violated
75 if((next != IDLE) && (next != DONE) && (tq[next_ti_pos].deadline < local_time))

next = SCHED_ERR;
}

void initialize() {
80 // initialize task queue and timekeeper

initialize_EDF_Task_Queue(tq);
local_time = 0;

fix_all_clocks();
85 schedule();

}

void start_task(int task_ID) {
// mark the start of the task execution

90 is_running[task_ID] = true;
}

void execute_task(int task_ID) {
// simulate running the task for one time step
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95 // task-specific behavior can be implemented by checking for taskID
tq[next_ti_pos].et += TIME_STEP;
// update shorthand
next_ti_et = tq[next_ti_pos].et;
// advance one step in time

100 local_time += TIME_STEP;
fix_task_clocks();

}

void finish_task(int task_ID) {
105 // mark the end of task execution and deque the instance

is_running[task_ID] = false;
EDF_dequeue(tq, next_ti_pos);

}

110 void idle() {
// advance one step in time
local_time += TIME_STEP;
fix_task_clocks();
schedule();

115 }

Listing B.2: UPPAAL Code for PE template to simulate three EDF-scheduled tasks

// OSEK scheduled Processing Environment with three Tasks
// Parameters:
// OSEK_Task tasks[3]: Array of three OSEK tasks
// int clock_offset: Clock offset relative to reference PE

5

// declaration of clocks
clock c;
clock tc;
int[0, TIME_MAX] local_time;

10

// declaration of basic scheduling parameters
OSEK_Task_Queue tq;
const int [0, TASK_AMOUNT] TASK_COUNT = 3;
int[0, MAX_PERIOD] TG_triggers[TASK_COUNT] = { tasks[0].period, tasks[1].period, tasks[2].period };

15

// variables determined by scheduling
int[-2, TASK_AMOUNT] next;
int[0, TASK_QUEUE_MAX] next_ti_pos;
int[0, TASK_QUEUE_MAX] queue_item_count;

20 // shorthands for Template use
int[0, MAX_WCET] next_ti_et;
int[0, MAX_WCET] next_ti_WCET;
int[0, MAX_WCET] next_ti_BCET;

25 void fix_task_clocks() {
// reset runtime clocks of tasks on this PE that are currently
// not running or suspended
for (i : int[0, TASK_COUNT - 1]) {

if(is_running[tasks[i].t.ID] == false) {
30 rt_c[tasks[i].t.ID] := 0;

}
}

}

35 void fix_all_clocks() {
// reset runtime and data age clocks of tasks on this PE continuously
// before starting
for (i : int[0, TASK_COUNT - 1]) {

if(is_running[tasks[i].t.ID] == false) {
40 rt_c[tasks[i].t.ID] := 0;

da_c[tasks[i].t.ID] := 0;
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}
}

}
45

void schedule() {
// generate and enqueue tasks for which the period is met
for (i : int[0, TASK_COUNT - 1]) {

if(local_time % TG_triggers[i] == 0) {
50 OSEK_Task_Instance ti;

OSEK_Task t = tasks[i];
ti = generate_OSEK_Task_Instance(t, local_time);
OSEK_enqueue(tq, ti);

}
55 }

// determine next task
next_ti_pos = OSEK_schedule(tq);
next = tq[next_ti_pos].osek_t.t.ID;

60 next_ti_et = tq[next_ti_pos].et;
next_ti_WCET = tq[next_ti_pos].osek_t.t.WCET;
next_ti_BCET = tq[next_ti_pos].osek_t.t.BCET;

// end simulation after the maximum simulation time is reached
65 if((local_time + clock_offset) >= TIME_MAX)

next = DONE;

// switch into overload mode (essentially deadlock)
// when the task queue is too full

70 queue_item_count = count_OSEK_queue_items(tq);
if(queue_item_count > TASK_QUEUE_OVERLOAD)

next = OVERLOAD;
}

75 void initialize() {
// initialize task queue and timekeeper
initialize_OSEK_Task_Queue(tq);
local_time = 0;

80 fix_all_clocks();
schedule();

}

void start_task(int task_ID) {
85 // mark the start of the task execution

is_running[task_ID] = true;
}

void execute_task(int task_ID) {
90 // simulate running the task for one time step

// task-specific behavior can be implemented by checking for taskID
tq[next_ti_pos].et += TIME_STEP;
// update shorthand
next_ti_et = tq[next_ti_pos].et;

95 // advance one step in time
local_time += TIME_STEP;
fix_task_clocks();

}

100 void finish_task(int task_ID) {
// mark the end of task execution and deque the instance
is_running[task_ID] = false;
OSEK_dequeue(tq, next_ti_pos);

}
105

void idle() {
// advance one step in time
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local_time += TIME_STEP;
fix_task_clocks();

110 schedule();
}

Listing B.3: UPPAAL Code for PE template to simulate three OSEK-scheduled tasks

// Verification automaton to check for the synchronization requirement imposed upon three tasks
// Parameters:
// int[1, TASK_AMOUNT] t_id[3]: Array of three task IDs
// for which the synchronization shall be checked

5 // int[0, MAX_PERIOD] sync_max: maximum total offset between
// each finish of the tasks referenced by t_id

const int [0, TASK_AMOUNT] TASK_COUNT = 3;

10 clock c;
clock tc;
bool triggered[TASK_COUNT];

void trigger(int[0, TASK_COUNT] id) {
15 triggered[id] = true;

}

// return the total number of task finishes that were already triggered in this run
int[0, TASK_COUNT] count_triggered() {

20 int[0, TASK_COUNT] count = 0;
for (i : int[0, TASK_COUNT - 1]) {

if(triggered[i])
count++;

}
25 return count;

}

// finish the run and reset all triggers
void reset_triggers() {

30 for (i : int[0, TASK_COUNT - 1]) {
triggered[i] = false;

}
}

Listing B.4: UPPAAL Code for a 3 task synchronization automaton template
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B.2 Templates

Figure B.1: Example of an OSEK-scheduled process environment template with three tasks
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Figure B.2: Example of an EDF-scheduled process environment template with three tasks
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Figure B.3: Template of a synchronization automaton for three tasks

Figure B.4: Template of an event chain automaton for three tasks
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