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Abstract
In the age of self-driving cars and other growing uses of autonomous systems,
ensuring that safety-critical so�ware works correctly became even more im-
portant. _e reactive systems that are the core of this change are becoming
increasingly complex and tend to work not only with reliable input from in-
side the system, but also incorporatemeasured data with a possible error and
received data with volatile reliability.
In this paper we will explore several diòerent approaches to applying formal
methods to verify properties over such complex reactive systems. We will
compare the synchronous data-�ow programming language Lustre and the
accompanying Kind 2model checker, the communication-focused formalism
mCRL2 and the probabilisticmodel checkers PRISM and Stormwith regard
to a case study of a reactive system exhibiting such properties, based on an
industrial automotive function.
_e case study consists of amodel with several features we have observed in
real-world examples, e.g. heavy use of �oating point numbers, error models
for input data, stochastically distributed input data and dependence on both
current and past system states. Requirements imposed upon the model are
also modeled a�er real-world prototypes and are deûned in a way that allows
checking for their satisûability in all three diòerent model implementations.
Used languages and toolsets are compared with regard to applicability given
the case study. _e strengths and weaknesses of the diòerent approaches are
discussed to give a rough overview of the current state of model-checking
complex reactive systems.
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1. Introduction

Reactive systems and requirements deûned upon them are getting increasingly complex. _ese
systems, used to build a variety of applications, such as in multimedia devices or avionic systems,
exhibit stochastic behaviour and also operate under constraints on timing and other resources
[20]. Ensuring the correctness of these systems is of paramount importance, especially for those
systems deployed in safety-critical applications.

_rough their continuous interaction with their operation environment, reactive systems are
subject to a variety of external stimuli. _is heterogeneity raises the pressure on veriûcation and
validation (V&V) techniques, which are used to ensure the correctness of reactive systems. _us,
V&V approaches used for the veriûcation of reactive systems are required to achieve a higher level
of �exibility in handling heterogeneous environment input. Looking at the interaction between
a reactive system and its operation environment, we see two fundamentally diòerent entities,
each of them working under their own set of rules. On one hand, the processes in the operation
environment are subject to the laws of physics and take place in continuous time. On the other
hand, the reactive system takes discrete values as input and computes discrete values in a discrete
timemodel.

1.1. Motivation
In this paperwe are examining state-of-the-art veriûcation techniques for reactive systemswhich
depend on several types of input from its surroundings. _e contrast between the actual physical
environment and the discrete model present several challenges; we need to describe a system
which exhibits the following properties:

• computations with �oating point numbers,

• some non-exact inputs (e.g. because they aremeasured) such that error ranges (absolute
and/or percental) need to be considered,

• some inputs prevent best-/worst-case veriûcation of themodel such that a distribution for
these parameters needs to be considered and an approach like quantitative veriûcation is
required, and

• not only working on direct input, but keeping an internal state and saving data, such that
the implemented model is required to preserve values of the state variables over several
iterations.

Initially, we intended to verify an automotive function which exhibited all these features and
had a very complex overall model. Due to the complexity of this function, we chose to focus
on a simpliûedmathmatical function, which still features all these properties. We verify it using
several diòerent approaches, with the explicit goal to choose themost suited one for veriûcation
of the initial automotive function.
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1. Introduction

1.2. Research Questions
To progress with solving our problem, we had to answer the following questions:
How can a complex reactive system under consideration of

1. measurement errors,

2. stochastic parameters, and

3. past system states

bemodeled?
How can a complex reactive system unser consideration of the

1. given assumptions and conditions,

2. dependency between current system state and past system states,

3. stochastic parameters of the function, and

4. desired conûdence level for the requirement satiûability

be veriûed?
We will compare three diòerent approaches to answer these questions, using the synchronous

data-�ow programming language Lustre and the accompanying Kind 2 model checker, the com-
munication-focused formalismmCRL2 and the probabilisticmodel checkers PRISM and Storm.

1.3. RelatedWork
In the recent few decades,model-checking has increasingly been used to verify the correct be-
haviourof reactive systems[13,20,25].A structured approach to chose amongmodeling languages
and tools for the formal analysis of cyber-physical systems is shown in [3]. It takes into account
three elements: viewpoints, which re�ect the stakeholders’ concerns,mathematical formalisms –
needed tomodel the stakeholders’ interests – and toolswhich implement these formalisms in their
respective input languages. Recognizing the diversity of veriûcation and validation approaches
for reactive systems, the RERS challenge [17] provides a forum for experimental proûle evalua-
tion based on speciûcally designed veriûcation tasks. _e benchmarks are synthesized to exhibit
increasingly complex properties, such as safety or liveness, reactive systems varying from a few
hundred lines tomillion hundred lines of code, aswell as language features such as assignments or
pointer arithnetics. However, these challenges have focused only on functional properties, leaving
for future research issues such as stochastic behaviour and errors in themeasured sensor data.

_e tools selected for our survey have found various applications in the past. Lustre andKind2
have also been used to verify SIMULINK models, e.g. of aviation controls[1] or of a triplex sensor
voter[12]. mCRL2 has been used to verify parts of the so�ware controlling the Large Hadron
Collider at CERN[18, 24]. _ere already are numerous approaches detailing the use of the PRISM
model checker for safety-critical systemswhere some kind ofuncertainty is involved[14, 22]. In [5],
the authors demonstrate the veriûcation of propertieswhichmust holdwithin a given conûdence
interval using PRISM.
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1. Introduction

1.4. Structure
Following these introductory sections, Chapter 2 will be used to introduce necessary basics in
model checking, stochastic veriûcation and the used languages and tools. Subsequently, in Chap-
ter 3 themain concept of this paper is detailed, explaining the reasoning behind the case study
and our choice of tools. We will give an overview of the properties that our model possesses and
the derivated requirements for the languages and toolchains used.

Wewill then introduce the case study inChapter 4, based on an existing function.Amathemat-
ical model for the case study is deûned, over which we will impose requirements that are to be
veriûed. _e deûnedmodel, even though heavily simpliûed compared to the original automotive
function, still retains the properties we identiûed to be very challenging to verify.

In Chapter 5 we will implement the models in the three chosen tools and will perform the
veriûcation itself, listing both the queries and the veriûcation results of the veriûable queries per
tool. A summarized overview about the tools and their actual features is given. _ese results are
then discussed in Chapter 6, where we detail the strengths and weaknesses of the surveyed tools
with regard to our model. We discuss complexity of both models and the actual veriûcation and
techniques to reduce the generated state space, ending the chapter with a conclusion about the
current state ofmodel checking with regard to growing system complexity.
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2. Preliminaries

In this chapter we will introduce concepts that might not be known to the reader of this paper,
speciûcally the basics of stochastic veriûcation, the truncated normal distribution used later in
themathematical model of the case study in Chapter 4 as well as the basics of the languages and
tools used to implement and verify themodel in Chapter 5.

2.1. Stochastic Veriûcation
While labelled transitions systems and ûnite-statemachines are already considered to be part of
Computer Science basics, several concepts used in stochastic veriûcation are not yet well-known.
In this section, we will introduce Discrete-TimeMarkov Chains as well as Markov Decision Pro-
cesses, which extend the concept of transition systems by properties required for stochastic veriû-
cation.

_e deûnitions in Section 2.1.1 and Section 2.1.2 are taken from the book ‘Principles ofModel
Checking’[7] and have only been slightly adapted. For amore in-depth introduction, the reader
is referred to this book.

2.1.1. Discrete TimeMarkov Chains (DTMC)
Discrete TimeMarkov Chain are transition systems where there are no nondeterministic choices,
but successor states may be chosen by probabilistic choices. _is way, the successor of the current
state is chosen by a probability distribution depending only on the current state. _e choices
depend only on the current state and not on any past ones, such that DTMCs are not aòected by
the history of past chosen states.
We consider a Discrete TimeMarkov Chain to be a tupleℳ = (𝑆,P, 𝜄init,AP,𝐿) where

• 𝑆 is a countable, non-empty set of states,

• P : 𝑆 × 𝑆→ [0,1] is the transition probability function such that for all states 𝑠 ∈ 𝑆 :∑︁
𝑠′∈𝑆

P(𝑠, 𝑠′) = 1,

• 𝜄init : 𝑆→ [0,1] is the initial distribution such that
∑︀

𝑠∈𝑆 𝜄init(𝑠) = 1, and

• AP is a set of atomic propositions and 𝐿 : 𝑆→ 2AP a labeling function.

A simple example of such a DTMC is given in Example 2.1 and visualized in Figure 2.1. _e
values of the probability transition function are given for each enabled transition (whereP(𝑠, 𝑠′) ,
0 for 𝑠, 𝑠′ ∈ 𝑆 ). _is DTMC is implemented in PRISM code in Section 2.3.3.

2.1.2. MarkovDecision Processes (MDP)
MarkovDecision Processes re-introduce the concept of nondeterminism into probabilistic transi-
tion systems, since they permit both probabilistic and nondeterministic choices. _ismakes them
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2. Preliminaries

𝑆 = {𝑎,𝑏,𝑐,𝑑,𝑒}, AP = 𝑆,𝐿(𝑠) = {𝑠}, 𝜄init(𝑎) = 1, 𝜄init(𝑠) = 0∀𝑠 ∈ 𝑆 ∖ 𝑎,
P(𝑎,𝑏) = 0.5, P(𝑎,𝑐) = 0.5, P(𝑏,𝑑) = 0.8, P(𝑏,𝑒) = 0.2, P(𝑐,𝑑) = 1, P(𝑑,𝑒) = 1 and

P(𝑠, 𝑠′) = 0 for any other 𝑠, 𝑠′ ∈ 𝑆 not explicitly listed

Example 2.1: Example of a Discrete TimeMarkov Chain

𝑎

𝑏

𝑐 𝑑

𝑒

0.5

0.5

0.2

0.8

1

1

Figure 2.1.:Visualization of Example 2.1

especially useful when parts of themodel can be quantiûed and estimated while others cannot,
such that probabilities for certain, but not all, choices can be given. _e nondeterministic choices
can be used for the parts of themodel that cannot be estimated or when all possible outcomes
need to be guaranteed.

We consider aMarkov Decision Process (MDP) to be a tupleℳ = (𝑆,Act,P, 𝜄init,AP,𝐿) where

• 𝑆 is a countable set of states,

• Act is a set of actions,

• P : 𝑆 ×Act× 𝑆 → [0,1] is the transition probability function such that for all states 𝑠 ∈ 𝑆
and actions 𝛼 ∈ Act: ∑︁

𝑠′∈𝑆
P(𝑠,𝛼,𝑠′) ∈ {0,1},

• 𝜄init : 𝑆→ [0,1] is the initial distribution such that
∑︀

𝑠∈𝑆 𝜄init(𝑠) = 1, and

• AP is a set of atomic propositions and 𝐿 : 𝑆→ 2AP a labeling function.

An action 𝛼 is enabled in state 𝑠 if and only if
∑︀

𝑠′∈𝑆 P(𝑠,𝛼,𝑠
′) = 1. Let Act(𝑠) denote the set

of enabled actions in 𝑠. For any state 𝑠 ∈ 𝑆 , it is required that Act(𝑠) , ∅. Each state 𝑠′ for which
P(𝑠,𝛼,𝑠′) > 0 is called an 𝛼-successor of 𝑠.

In accordance with this deûnition, Example 2.2 gives an MDP based on Example 2.1, extended
by actions and nondeterministic transitions outgoing from state 𝑏. Note that transitions are non-
deterministic if there aremultiple outgoing transitions from a state with diòerent actions, where
for each action the sum of probabilities sums to one. A visual representation of this example is
shown in Figure 2.2 and the example is implemented in Section 2.3.3 as well.
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2. Preliminaries

𝑆 = {𝑎,𝑏,𝑐,𝑑,𝑒}, AP = 𝑆, 𝐿(𝑠) = {𝑠}, 𝜄init(𝑎) = 1, 𝜄init(𝑠) = 0∀𝑠 ∈ 𝑆 ∖ 𝑎, Act = {𝛼,𝛽,𝛾,𝜖},
P(𝑎,𝛼,𝑏) = 0.5, P(𝑎,𝛼,𝑐) = 0.5, P(𝑏,𝛽,𝑑) = 1, P(𝑏,𝛾,𝑒) = 1, P(𝑐,𝛽,𝑑) = 1,

P(𝑑,𝛾,𝑒) = 1, P(𝑒,𝜖,𝑒) = 1 and P(𝑠,𝜖, 𝑠′) = 0 for any other 𝑠, 𝑠′ ∈ 𝑆 not explicitly listed

Example 2.2: Example of aMarkov Decision Process, adaptation of Example 2.1 featuring nonde-
terminism

𝑎

𝑏

𝑐 𝑑

𝑒

𝛼,0.5

𝛼,0.5

𝛽,1

𝛾,1

𝛽,1

𝛾,1

𝜖,1

Figure 2.2.:Visualization of Example 2.2

2.2. TruncatedNormalDistribution
To estimate the distribution of input parameters, we will use a doubly truncated normal distribu-
tion. Such a distribution is similar to a normal distribution in that it is distributed around amean
with a standard deviation, but its lower and upper limits can be chosen such that the probability
distribution function between those two points sums up to 1.[19]
We consider a function to be the probability density function (PDF) of a truncated normal

distribution if it can be expressed as

𝜑(𝜉)
𝜎 (Φ(𝛽)−Φ(𝛼))

with parameters

𝛼 =
𝑎−𝜇
𝜎

, 𝛽 =
𝑏 −𝜇
𝜎

, 𝜉 =
𝑥 −𝜇
𝜎

and functions
𝜑(𝜉) =

1
√
2𝜋

exp
(︂
−1
2
𝜉2

)︂
, Φ(𝑥) =

1
2

(︃
1+ erf

(︃
𝑥
√
2

)︃)︃
.

Here, themean is deûned by 𝜇, the standard deviation by 𝜎 and the upper and lower truncation
limit by 𝑎 and 𝑏 respectively. 𝛼, 𝛽 and 𝜉 have been introduced to shorten the function. _e
function erf is the Gauss error function deûned as

erf =
2
√
𝜋

∫︁ 𝑥

0
𝑒−𝑡

2
𝑑𝑡.
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2. Preliminaries

2.3. Used Tools & Languages
In Section 1.2 wementioned the tools we are going to use throughout this paper, the reasoning
behind the choices are explained in Chapter 3. Here, we will give a short introduction into each
language and tool to give the reader a basic understanding of themodel building and veriûcation
process. For amore in-depth introduction into each tool, the reader is referred to the respective
tools’ website.

2.3.1. Lustre &Kind 2
Lustre1 is a synchronous data-�ow programming language, Kind 22 is an SMT-based model
checker for synchronous reactive systems which gives counter-examples when a requirement is
not met.[6]Models are implemented by deûning a sequence of nodes, which take several input
parameters, perform calculations and output results. _ese nodes can be chained to create sequen-
tial data �ow, concurrency or nondeterminism are not supported. _e language only supports a
limited set of operators and no loops such that more complex operations cannot be implemented.

node Ex(a, b : real) returns (d : real);
(*@contract import ExSpec(a, b) returns (d); *)
var

c : real;
let

c = a + b;
d = c + 0 -> pre(c);

tel

Listing 2.1.: Example of a Lustre computation node

_e contract line in the node speciûcation ofListing 2.2 is notpartof standardLustre syntax, but
instead of Kind2 syntax. Contracts are comparable to nodes, but instead of equation systems they
contain model checking speciûcations like assumptions and guarantees. We use the contract to
specify the limitations on the input parameters as well as expectations for the output parameters.

contract ExSpec(a, b : real) returns (d : real);
let

assume a >= 0.0;
assume b <= 2.0 * a;

guarantee not (d >= 10 * a * b);

mode ExMode (
require c <= 0.0;

ensure not (d > 0.0);
);

tel

1http://www-verimag.imag.fr/The-Lustre-Toolbox.html
2http://kind.cs.uiowa.edu/
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2. Preliminaries

node Ex(a, b : real) returns (d : real);
(*@contract import ExSpec(a, b) returns (d); *)
var

...
tel

Listing 2.2.: Example of aKind 2 contract for the node in Listing 2.1

2.3.2. mCRL2
mCRL23 is a formalism ‘which extends the algebra of communicating processes (ACP) [...] with
various features including notions of data, time, andmulti-actions’[16]. It has been used for the
veriûcation of a variety of reactive systems and does natively support probability distributions[4].

In mCRL2, processes are deûned as transition systems with parametrizable actions. _ese ac-
tions – if they have parameters – can be assigned either numeric constants or one can use the
sum-operator to enumerate over a limited domain. Listing 2.3 shows an mCRL2 system speciûca-
tion with an unparametrized action a, a parametrized action b taking real numbers as parameter
and the parametrized action c which expects a natural number as parameter. _e process P com-
bines all of these, transitioning out of the initial state using action a, transitioning out of the
reached state using action b with the constant parameter 5/2 and then using the sum-operator
to enable transitions using actions c for the parameters in the range [0,10] ∈N to the last state
of themodel, then starting process P again, transitioning into the initial state.

act a;
act b: Real;
act c: Nat;

proc P = a . b(5/2) . sum n: Nat . (n >= 0 && n <= 10) -> c(n) . P;

init P;

Listing 2.3.: Example of an mCRL2 speciûcation

_emCRL2 toolset is quite comprehensive and contains various tools, including the LTSgraph
utility. Figure 2.3 shows the visualization of the Linear Transition System (LTS) using this tool,
generated from the code in Listing 2.3. _e eòects of the bounded sum-operator can be seen in
the amount of transitions from state 2 back to the initial state.

2.3.3. PRISM & Storm
PRISM4 is a model checker that supports various types of probabilistic models, including the
already introduced DTMCs andMDPs[20]. We will introduce the PRISM speciûcation language
here, which is also supported by the Storm5 model checker, such that we can build probabilistic
3https://www.mcrl2.org/
4http://www.prismmodelchecker.org/
5http://www.stormchecker.org/
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2. Preliminaries

0

1

2

a

b(5 / 2)

c(0) c(1) c(2) c(3) c(4) c(5) c(6) c(7) c(8) c(9) c(10)

Figure 2.3.:Visualization of the LTS generated by Listing 2.3

models and apply quantitative veriûcation in Chapter 5.
_is speciûcation language diòers a bit from the other two since it is not explicitly designed to

verify reactive systems. But since it natively supports stochastic veriûcation, which the others do
not, and is very �exible in what models can be created, we will attempt to use it to our purpose.

Listing 2.4 deûnes Example 2.1 using a PRISM speciûcation. _e very ûrst line indicates the
model type, here dtmc signals that the ûle contains a DTMC description. Computations are done
in modules, this speciûcation only contains the single module exDTMC, where the variable s is
deûned for the value range [0,4] and initialized with 0. _en, the transitions from Example 2.1
are deûned; from state s = 0 corresponding to 𝑎 in the deûnitions, transitions to the states s =

1 and s = 2, corresponding to 𝑏 and 𝑐 respectively, are deûned, each with probability 1
2 . State s

= 3matches state 𝑑 in the deûnition, s = 4 state 𝑒.

dtmc

module exDTMC
s : [0 .. 4] init 0;

[] (s = 0) -> 1/2 : (s' = 1) + 1/2 : (s' = 2);
[] (s = 1) -> 4/5 : (s' = 4) + 1/5 : (s' = 3);
[] (s = 2) -> 1 : (s' = 3);
[] (s = 3) -> 1 : (s' = 4);

endmodule

Listing 2.4.: Example from Section 2.1.1

Listing 2.5 contains themodel ûle for Example 2.2, startingwith the appropriate line indicating
the mdpmodel type. _e very ûrst transitions are equal to that in Listing 2.4, all other transitions
are deûned without probabilities since these are either exactly 1 or nondeterministic.

mdp

module exMDP
s : [0 .. 4] init 0;

[] (s = 0) -> 1/2 : (s' = 1) + 1/2 : (s' = 2);
[] (s = 1) -> (s' = 3);
[] (s = 1) -> (s' = 4);
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2. Preliminaries

[] (s = 2) -> (s' = 3);
[] (s = 3) -> (s' = 4);
[] (s = 4) -> (s' = 4);

endmodule

Listing 2.5.: Example from Section 2.1.2
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3. Concept

Our research goal is to determine how to model a reactive system and its environment with
regards to the requirements deûned by the system properties as mentioned in Section 1.1.We had
towork outwhich attributeswere unique to this system and its environments and how they come
into play when applying formal veriûcation techniques. In addition, we had to deduce which
criteria are important for the veriûcation itself and how we could compare and evaluate these
considering several diòerent approaches.
We surveyed applicable languages and tools and decided to work with Lustre and Kind 2 - a

synchronous data-�ow programming language and an accompanying SMT-basedmodel checker,
mCRL2 - a formal speciûcation language based on the algebra of communicating processes (ACP),
aswell as PRISM and Storm - two probabilisticmodel checkers, both using the same input format
for the system model as well as for the requirement speciûcation. Each tool proposes a diòerent
approach to specifying andmodel-checking reactive systems.We thus implemented the system
model in various ways and compare both the results and the tools’ respective applicability to our
problem.

_e reason to choose Lustre andKind 2 resulted from the fact that it provided a native concept
to implement iteration-based reactive systems and access data from previous iterations using
the pre-operator. With theKind 2 model checker, system behaviour and speciûcation are closely
coupled and in cases of violations, counter-examples are provided.
We chosemCRL2 since it is a process algebra explicitly designed for reactive systems and also

has native support for probability distributions for input parameters. _e toolset surrounding
mCRL2 is quite powerful and features, in addition to the veriûcation engine, also a visualization
tool as well as a simulator.

To alsoperform quantitativemodel checking,we opted tousePRISM as a speciûcation language
since both its modeling and its veriûcation capabilities appeared to be very comprehensive. A�er
beginning to use PRISM,we also found the Stormmodel checkerwhich conveniently uses PRISM
models as an input format while providing better performance and additional features.

support for �oating
point numbers

support for error models
support for history-
dependent veriûcation
support for unreliable/

stochastic input
sequential control �ow

data manipulation/calculation

Lustre
mCRL2
PRISM

Modeling

Kind 2 contracts
𝜇-calculus formulae

PCTL* formulae
Speciûcation

Kind 2
mCRL2
PRISM

Storm

Veriûcation

?

Figure 3.1.:Visualization of themodel-building and veriûcation concept
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3. Concept

Figure 3.1 shows howwe are going to approach this problem.We have selected diòerent possible
approaches and know how the veriûcation step works, but we will need to see how many of our
model properties can be actually be implemented in the diòerent languages and tools.

_e very basics of the model, the sequential control �ow of the program and the ability to
manipulate data and to calculate results, are supported by all of the tools.We also know that every
approach has support for �oating point numbers, but will need to ascertain to which extent they
can be used in the veriûcation process.

If the language supports �oating point numbers in modeling and veriûcation, we can assume
that we are able to implement the error models quite as well, since eòectively they just extend the
range of given input data to include the uncertainty.

Support for history-dependent veriûcation requires the ability to implement an iteration-based
model and to save and load data across iterations; there are various ways to accomplish this, but
in the end each approach will have its own way of implementing this.

We know that we can model probabilistic input parameters in PRISM models and that mCRL2
also has native support for probability distributions, but we will attempt to ûnd ways to model
our own probability distribution function in all three languages.

13 / 35



4. Case Study

To be able to compare the diòerent toolsets with regard to applicability to the original auto-
motive function, we perform a case study. _emodel built throughout this chapter preserves the
main properties of the initial model as mentioned in Section 1.1 such that we can perform an
evaluation to answer the question from Section 1.2.

4.1. Important Criteria
_e function we base our simpliûedmodel on worked with measured values, but the ûnal result
was supposed to be veriûed considering the real values, which is why the possible deviation
between measured and real values plays an important role here. _e error models were given as
tolerance intervals expressing either absolute or percental deviation. In our model we chose to
represent this by using ‘raw’ (real) values as input and computing the function input parameters
from these and the given error ranges.

In addition, the original function had several input parameters that were dependent on trans-
mitted signals, which may be unavailable or less reliable at times. Both a best- and worst-case
veriûcation would not make sense for these signals, since in reality the reliability of these will
be somewhere inbetween. _is is the reason for a stochastically distributed input parameter in
themodel, as we have to assume a ûxed distribution instead of relying on best- and worst-case-
veriûcation for this parameter. For the veriûcation of a given function, the distribution should be
estimated using tests and adjusted to include a reasonable buòer.

Model-checking ‘is mainly appropriate to control-intensive applications and less suited for
data-intensive applications as data typically ranges over inûnite domains.’[7] Although the input
data for this model is limited by ranges, dealing with �oating point numbers means we are still
working with inûnite domains. Choosing an appropriate discretization, we can obtain data from
an enumerable ûnite domain, but are distancing ourselves from themodel.
Considering that themodel will be implemented in so�ware and computers always work with

discrete representations of �oating point numbers, this can bemitigated by either

• knowing the target machine’s exact discretization and applying this to the veriûablemodel
implementation or

• choosing an appropriate discretization and shipping itwith the veriûcation results, instruct-
ing the developers to use this exact discretization when implementing the so�ware system.

Having a stochastically distributed input parameter requires similar discretizationwork.While
some of the tools we are using natively allow for stochastic veriûcation to some extent, none
support specifying an exact distribution function for a variable. Instead, we will have to decide
on an appropriate discretization mechanism for the distribution function, which again distances
us from the actual model.
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4.2. Mathematical Model
_e input parameters in our actual model represent measured values. To simulate this, themathe-
matical model uses the ‘raw’ input parameters 𝑣1,raw,𝑣2,raw such that by incorporating the error
models we get the values 𝑣1,𝑣2 emulating measured values. _e error model 𝑒1 represents an
absolute error aòecting 𝑣1 additively as 𝑒1 ∈ [−𝑒1,max, 𝑒1,max] ⊂ R, 𝑒1,max ∈ R+. Error 𝑒2 shall
aòect 𝑣2 multiplicatively as percental distortion within range [−𝑒2,max, 𝑒2,max] ⊂ R, 𝑒2,max ∈
[0.00,1.00] ⊂R+. Note that additionally, we do not want our values to go below 0, even under
consideration of the error model. _is is no problem with the percentual error, but we will need
to put a constraint on the absolute error.

value 𝑣1,raw ∈ [0,𝑣1,max] ⊂R+,𝑣1 = 𝑣1,raw + 𝑒1
⇒ 𝑣1 ∈ [0,𝑣1,max + 𝑒1,max] ⊂R+

value 𝑣2,raw ∈ [0,𝑣2,max] ⊂R+,𝑣2 = 𝑣2,raw ± (𝑒2 · 100)%
= 𝑣2,raw + 𝑣2,raw · 𝑒2
⇒ 𝑣2 ∈ [0,𝑣2,max + 𝑣2,max · 𝑒2,max] ⊂R+

Some of the parameters in the actual model cannot be realistically veriûed using worst-case
or best-case analysis, e.g. the accuracy of GPS data. To handle these parameters, we will assume
a stochastic distribution. _e mathematical model includes a parameter weighting 𝑤 ∈ [0,1]

modeled as a truncated normal distribution as described in Section 2.2 with themean at 0.75 and
a standard deviation of 0.8, such that it is ‘mostly close to 1’.

PDF 𝑓 (𝑥) =

𝑒−0.78125·(𝑥−0.75)
2

√
2𝜋

0.8

⎛⎜⎜⎜⎜⎝12
⎛⎜⎜⎜⎜⎝1+ erf

⎛⎜⎜⎜⎜⎝ 5
16√
2

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠− 0.8⎛⎜⎜⎜⎜⎝12
⎛⎜⎜⎜⎜⎝1+ erf

⎛⎜⎜⎜⎜⎝ −1516√
2

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠
= 1.11208 · 𝑒−0.78125·(𝑥−0.75)2 , 0 ≤ 𝑥 ≤ 1

Since we are dealing with a continuous random variable, we cannot get the probabilities for
speciûc events or points, but instead have to integrate the probability distribution function over
an interval [𝑎,𝑏] with 𝑎,𝑏 ∈ [0,1] to get the probability 𝑝[𝑎,𝑏].

_e model uses functions which save recent values and ‘learn’ from them, e.g. by building a
moving average over themost recent 𝑥 values. We deûne the pre-operator to access values from
previous iterations, giving a placeholder value for the ûrst iteration, such that pre(𝑣,0) returns
the value of 𝑣 from the previous iteration and 0 in the ûrst one. We will also allow them to be
nested to access values from an arbitrary number of previous iterations.
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Figure 4.1.:Graph of the Probability Distribution Function for 𝑤

iteration 1 2 3 4 5 6
𝑣 1 2 3 4 5 6
pre(𝑣,0) 0 1 2 3 4 5
pre(pre(𝑣,0),0) 0 0 1 2 3 4

Table 4.1.: Example for the iteration-based use of the pre-operator

_e results that are to be calculated are the following:

𝑟 = 𝑣1 + 𝑣2
𝑟𝑤 = 𝑤 · 𝑟
𝑟𝑝 = 𝑣1 +pre(𝑣2,0)

Assuming an iteration basedmodel with discrete time 𝑡 ∈N, where 𝑡 is the iteration, we get
the following formulas:

𝑟(𝑡 ≥ 0) = 𝑣1(𝑡) + 𝑣2(𝑡)

𝑟𝑤(𝑡 ≥ 0) = 𝑤(𝑡) · 𝑟(𝑡)
𝑟𝑝(𝑡 ≥ 1) = 𝑣1(𝑡) + 𝑣2(𝑡 − 1)
𝑟𝑝(𝑡 = 0) = 𝑣1(0)

16 / 35



4. Case Study

4.3. Requirements
For thismodelwewill specify a total of ten requirements, ûve of themprobabilistic andûve of them
not. Since we will use three very diòerent approaches to implement and verify themodel, we will
phrase the requirements using a combination of natural language andmathematical operators.
From this point onward, we will assume 𝑣1,𝑚𝑎𝑥 = 𝑣2,𝑚𝑎𝑥 = 10 and 𝑒1,𝑚𝑎𝑥 = 0.5, 𝑒2𝑚𝑎𝑥 = 0.05

unless explicitly stated otherwise.

• Non-probabilistic requirements:

NP1 Does 𝑟 ≥ (𝑣1,raw + 𝑣2,raw) · 1.1 eventually hold true in at least one iteration?

NP2 Does (𝑣1,raw + 𝑣2,raw) · 0.9 − 0.5 ≤ 𝑟 ≤ (𝑣1,raw + 𝑣2,raw) · 1.1 + 0.5 eventually hold
true in each and every iteration?

NP3 Assuming that 𝑒2 ≤ 0,𝑣1,raw = 0 holds, does 𝑟 > 𝑣2,raw eventually hold true in at
least one iteration?

NP4 Assuming that 𝑣1,raw ≥ 1, does 𝑟𝑝 > 10 · 𝑣1,raw eventually hold true in at least one
iteration?

NP5 Does 𝑟𝑝 ≥ 𝑣1,raw + 𝑣1 + 𝑣2 eventually hold true in at least one iteration?

• Probabilistic requirements:

P1 What is the probability that 𝑟𝑤 ≥ 10 eventually holds true when 𝑤 ≥ 0.7 holds?

P2 What is the probability that 𝑟𝑤 ≥ 10 eventually holds truewhen (𝑣1,raw+𝑣2,raw) ≥ 10

holds?

P3 What is the probability that 𝑟𝑤 > 20 eventually holds true?

P4 Does the probability of 𝑟 ≥ (𝑣1,raw + 𝑣2,raw) equal that of 𝑟 ≤ (𝑣1,raw + 𝑣2,raw)?

P5 What is the probability that 𝑟𝑝 ≥ 2 · 𝑣1,raw eventually holds true?

_e requirements can be considered to be rather complex andmainly depend on the ‘raw’ input
parameters such that the error models are incorporated for each parameter.
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5. Evaluation

We are comparing diòerent toolswith varying strengths to implement themodel and verify the
requirements. _e used languages and tools have been introduced in Section 2.3 and themodel
building and veriûcation process is documented in this chapter.

5.1. Setup
_e calculations have been performed inside a VMWare appliance with 4 vCPU’s, each detected
as an Intel E5-2683 v4 @2.10 GHz with two cores and a total BogoMIPS of 4200 and 64GB of
RAM. _e applications used for this evaluation run mostly single-threaded, with some of the
calculations – if possible – oøoaded to other threads.

_e Storm model checker was compiled from source version 1.3.0 with the optional Intel
_readed Building Blocks,MathSAT andGurobi libraries enabled. For the PRISMmodel checker,
Lustre & Kind 2 as well as mCRL2we used the pre-compiled binaries.

5.2. SynchronousData�ow Programming Language: Lustre &Kind 2
In this section we will implement themodel from Section 4.2 in Lustre, the requirements from
Section 4.3 as aKind 2 contract.

5.2.1. Model Building
For our model, we will do the computations in a node where the raw parameters are input vari-
ables, the ‘measured’ variables are inner variables and the output is declared as node output. _e
computation node including the line specifying the corresponding contract is shown in Listing 5.1.

node Model(v1raw, v1e, v2raw, v2e : real) returns (r, rp : real);
(*@contract import ModelSpec(v1raw, v1e, v2raw, v2e) returns (r, rp); *)
var

v1, v2 : real;
let

v1 = v1raw + v1e;
v2 = v2raw + v2raw * v2e;

r = v1 + v2;
rp = v1 + 0.0 -> pre(v2);

tel

Listing 5.1.: Lustre node to calculate 𝑟, 𝑟𝑝

Implementing the model behaviour in Lustre is straightforward, since all properties except
stochastic input parameters are natively supported and Lustre can work with �oating point num-
bers (called Real in Lustre) without any need for discretization.
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5.2.2. Veriûcation
SinceKind 2 only veriûes safety properties, we will need to invert reachability properties. To give
an example, instead of checkingwhether r = 21 can be reached,we attempt to check the inverse:
guaranteeing that it cannot be reached and seeing whether themodel checker outputs false as
well as a trace on how this is obtained. We have transferred the requirements from Section 4.3 to
aKind 2 contract in Listing 5.2. _e contract startswith several assumes, limiting the range of the
input parameters and ensuring that 𝑣1,𝑣2 never get negative. _en, amode def is deûned,which
is the defaultmode and always holds true;when using mode-based veriûcation, at least onemode
must bematched, so we include this to guarantee a successful veriûcation. _e requirements NP1,
NP2 andNP5 could be expressed using guarantee statements since the dependence on the input
parameters can be directly encoded into the query. For the requirements NP3 and NP4 we had
to specify modes to indicate for which range of the input parameters the guarantee should hold
true.

contract ModelSpec(v1raw, v1e, v2raw, v2e : real) returns (r, rp : real);
let

-- limits for the raw input parameters
assume v1raw >= 0.0;
assume v1raw <= 10.0;
assume v2raw >= 0.0;
assume v2raw <= 10.0;
-- limits for the errors
assume v1e >= -0.5;
assume v1e <= 0.5;
assume v2e >= -0.05;
assume v2e <= 0.05;
-- ensure that the calculated values stay within defined bounds (v1, v2 not get

negative)→˓

assume (v1raw + v1e) >= 0.0;
assume (v1raw + v1e) <= 10.5;
assume (v2raw + v2raw * v2e) >= 0.0;
assume (v2raw + v2raw * v2e) <= 10.5;

-- default mode, required to perform mode-based model-checking
mode def (

require v1raw >= 0.0;
require v2raw >= 0.0;

);

guarantee not (r >= (v1raw + v2raw) * 1.1); -- NP1
guarantee r <= ((v1raw + v2raw) * 1.1 + 0.5) and (r >= (v1raw + v2raw) * 0.9 -

0.5); -- NP2→˓

mode NP3 (
require v2e <= 0.0;
require v1raw = 0.0;
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ensure not (r > v2raw);
);

mode NP4 (
require v1raw >= 1.0;

ensure not (rp > 10.0 * v1raw);
);

guarantee not (rp >= v1raw + v1 + v2); -- NP5
tel

Listing 5.2.: Lustre contract for node P

Note that every requirement except NP2 expresses a requirement does not need to always hold
true, which in LTL-like speciûcation languages would be denoted using the exists operator. Since
Lustre only veriûes guarantees/ensures,we have to invert the property to express that itwill never
be true and if themodel-checker gives us a counter-example,we know that the requirement holds
true in at least one system state. _e query and veriûcation results are listed in Table 5.1; if the
query had to be inverted to check for the property, the veriûcation result is the opposite of the
query result.

Req. Query Tool
Output

Veriûcation
Result

NP1 guarantee not (r >= (v1raw + v2raw) * 1.1) property
invalid Ë

NP2 guarantee r <= ((v1raw + v2raw) * 1.1 +
0.5) and (r >= (v1raw + v2raw) * 0.9 - 0.5)

property
valid Ë

NP3 mode NP3
property
invalid Ë

NP4 mode NP4
property
invalid Ë

NP5 guarantee not (rp >= v1raw + v1 + v2)
circular
dependency �

Legend:Ë Satisiûed,é Violated, � Not veriûable
Table 5.1.:Veriûcation of the Lustremodel using Kind 2

_e properties deûned for the requirements NP1,NP3 andNP4were found to be invalid by the
Kind 2model checker and counter-exampleswere returned. Since these three properties describe
requirements that eventually hold true in at least one iteration,we inverted these to guarantee that
no state is found in which they are true. As themodel checker found counter-examples, we know
that the requirements are indeed valid in at least one iteration and that the requirements hold.
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NP2 describes a requirement that has to be fulûlled in each and every iteration, which is why
we do not have to invert the logic for the guarantee statement. _emodel checker found this
property to be valid, such that we know that this requirement is satisûed as well.

Unfortunately itwas not possible to verifyNP5 here, sinceKind 2 throws a circular dependency
error. To resolve the circular dependency, both v1 and v2 would have to be removed from the
guarantee statement since rp is directly calculated from them (or their value in the previous
iteration),making the veriûcation of this query not possible using this toolchain.

5.3. Process Algebrae:mCRL2
_e next language we will implement the model in is mCRL2. mCRL2 describes mainly the be-
haviour of processes, actual data is not considered. _ere is no support for any kind ofmemory
concept or the pre-operator, since no iteration-based concept could be implemented and thus no
data can be preserved over iterations. Unfortunately,mCRL2has no support of real numbers in the
sum-operator for enumeration such that manual discretization is required. Attempting to use the
built-in distribution operators disables veriûcation, eòectively making the built-in probabilistic
operations useless for us since there is no ‘easy’ way to verify stochastic processes.
Because of these reasons, our mCRL2 model is the smallest, since we only realized the veriûca-

tion of 𝑟 . Still, wemanaged to implement the error models as well, which might prove useful for
the veriûcation of other, diòerent reactive systems.

5.3.1. Model Building
For our model, we declare the output functions as parametrizable actions and will get input
from process variables enumerated by a bounded sum-operator. For this, we will need bounded
variables from an enumerable domain. _e variables v1raw, v2raw are limited to the value
interval between 0 and 𝑣1,max and 𝑣2,max respectively, the same is done for e1 and e2with respect
to 𝑒1,max, 𝑒2,max. _en, before doing the actual computation, we also set the bounds for the
computed parameters v1 and v2. Note that all real numbers are given as fractions, sincemCRL2
does not allow writing them any other way. _e veriûcation is done by checking the reachability
of parametrized actions in the generated LTS, in this case of 𝑟 .

% parametrized action to check for the calculation result
act r: Real;

proc P = sum v1raw, v2raw: Nat, v1e, v2e: Int . % enumerate raw, error input
parameters→˓

% bounds for input parameters
((0 <= v1raw && v1raw <= 10) && (0 <= v2raw && v2raw <= 10) &&
(v1e >= -5 && v1e <= 5) && (v2e >= -5 && v2e <= 5) &&

% ensure that calculated values stay within bounds
(((v1raw + (v1e/10)) >= 0) && ((v1raw/10 + (v1e/10)) <= 105/10)) &&
(((v2raw + (v2raw * (v2e/100))) >= 0) && ((v2raw + (v2raw * (v2e/100))) <=

105/10)))→˓

% calculate r and use parametrized action to traverse, restart process
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-> r((v1raw + (v1e/10)) + v2raw + (v2raw * (v2e/100))) . P;

init P;

Listing 5.3.:mCRL2 code to calculate themodel

_e generated LTS from Listing 5.3 is nondeterministic with only one state, 1891 action labels
and 14036 transitions. Unfortunately,while Listing 5.3 calculates r depending on the input param-
eters, we have no way to access the values of the input parameters from veriûcation queries. For
this, we add additional actions that transition using the chosen value as parameter, such that we
can eòectively determine which parameters led to the current state; this is shown in Listing 5.4.

% parametrized actions for the input values
act v1raw, v2raw: Nat;
act v1e, v2e: Int;
% parametrized actions for the calculated values
act v1, v2, r: Real;

proc P = sum v1r, v2r: Nat, v1err, v2err: Int . % enumerate raw, error input
parameters→˓

% bounds for input parameters
((0 <= v1r && v1r <= 10) && (0 <= v2r && v2r <= 10) &&
(v1err >= -5 && v1err <= 5) && (v2err >= -5 && v2err <= 5) &&

% ensure that calculated values stay within bounds
(((v1r + (v1err/10)) >= 0) && ((v1r/10 + (v1err/10)) <= 105/10)) &&
(((v2r + (v2r * (v2err/100))) >= 0) && ((v2r + (v2r * (v2err/100))) <=

105/10)))→˓

% traverse states using parametrized actions to allow for model checking
-> v1raw(v1r) . v2raw(v2r) . v1e(v1err) . v2e(v2err)

% calculate values for v1, v2
. v1(v1r + (v1err/10)) . v2(v2r * (v2err/100))

% calculate value for r and restart process
. r((v1r + (v1err/10)) + v2r + (v2r * (v2err/100))) . P;

init P;

Listing 5.4.:mCRL2 code to calculatemodel and enter a chain of states allowing to verifyproperties
depending on input parameters

_e LTS generated by the speciûcation from Listing 5.4 is nondeterministic as well, with 84217
states, 2098 action labels and 98252 transitions.

5.3.2. Veriûcation
To verify the requirements,wewill have to express them asmCRL2-speciûc textual representations
of 𝜇-calculus formulae. Since we have only modeled the calculation of 𝑟 in mCRL2, we are only
able to verify the requirements NP1 – NP3 here.
For our data-dependent purposes, the use of both themodeling and veriûcation language of

mCRL2 turned out to be rather cumbersome, but the 𝜇-calculus is very powerful and the imple-
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Req. Query Tool
Output

Veriûcation
Result

NP1

nu X.([

exists v1r: Nat.v1raw(v1r)

=> exists v2r: Nat.v2raw(v2r)

=> exists x: Real.r(x)

=> val(x>(11/10*(v1r+v2r)))

]true)

true Ë

NP2

nu X.([

forall v1r: Nat.v1raw(v1r)

=> forall v2r: Nat.v2raw(v2r)

=> forall x: Real.r(x)

=> val(

(v1r + v2r) * (9/10) - 5/10 <= x ||

(v1r + v2r) * (11/10) + 5/10 >= x)

]true)

true Ë

NP3

nu X.([

v1raw(0)

=> exists v2r: Nat.v2raw(v2r)

=> exists e2: Nat.v2e(e2)

=> val(e2 <= 0)

=> exists x: Real.r(x)

=> val(x > v2r)

]true)

true Ë

Legend:Ë Satisiûed,é Violated, � Not veriûable
Table 5.2.:Veriûcation of themCRL2 model of our case study

mentation here allows us to checkwhether states are reachedusing a combination ofmathematical
quantiûers and the implication operator =>.

In each query we use the greatest ûxed point operator nu to search for a sequence of states in
which the parametrized actions are traversed in a way that match the original requirement.We
can parametrize the states using the exists and forall operators, which work like the known
quantiûers, to later use them in the val function which takes an equation and outputs true if it
holds, false otherwise.
For NP1 and NP3, we use the exists operator to check whether there is a sequence of states

that matches the requirement, for NP2 we use the forall quantiûer requiring the relation to
hold for every valid sequence.

With themodel from Listing 5.4we could successfully check the requirements NP1 – NP3 and
the results are consistent with the ones obtained using Lustre and theKind 2 model checker.
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5.4. ProbabilisticModel-Checkers: PRISM, Storm
_is approach using probabilistic model checkers diòers a bit from the other two approaches
since the used tools are not explicitly designed to verify reactive systems. But since PRISM and
Storm natively support stochastic veriûcation, which the others do not, and is very �exible in
what models can be created, we will attempt to use it to our purpose. _e PRISM model can also
be used as input for the Stormmodel checker[11],which implements comparable functions using
diòerent engines.
As mentioned in Section 4.1 we will have to choose a discretization for the probability distri-

bution, which will have an impact on the veriûcation outcome. We will choose a step size res𝑤
such that 𝑤 is evaluated 1

res𝑤
times between [𝑎,𝑏]; for example, with res𝑤 = 0.1 we would have

10 steps from 0.1 to 1.0 while with res𝑤 = 0.01 we would have 100 steps from 0.01 to 1.0.

5.4.1. Model Building
We will build our model as an MDP and will start by introducing global variables (the ‘raw’ input
parameters to be initialized) aswell as variables that indicatewhether the initialization has already
taken place. In addition to the original model, we introduce a constant to limit the number of
iterations in themodel. Since the introduction of the history, unbounded iterations simply time
out and it turns out that the state space grows exponentially with the amount of iterations chosen.

mdp

// raw values 0 to 10
global v1raw: [0..10];
global v2raw: [0..10];
// error -0.5 to 0.5
global v1e: [-5..5];
// error -0.05 to 0.05
global v2e: [-5..5];
// weighting 0 to 1
global w: [0..100];

// boolean initialization variables
global v1rawInit: [0..1] init 0;
global v2rawInit: [0..1] init 0;
global v1eInit: [0..1] init 0;
global v2eInit: [0..1] init 0;
global wInit: [0..1] init 0;

// number of iterations
const int k = 1;
global i: [0..k];

Listing 5.5.:Header for the PRISM model, deûning global variables

_e variable v1 is initialized in themodule initv1raw, which nondeterministically assigns a
variable inside the bounds and sets v1rawInit to 1 (equivalent to true) meaning it is initialized.
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In our example, v1 and v2 share the same bounds, so we can simply use amodule rewrite of this
module for the initialization of v2.

module initv1raw
[] (v1rawInit = 0) -> (v1raw' = 0) & (v1rawInit' = 1);
[] (v1rawInit = 0) -> (v1raw' = 1) & (v1rawInit' = 1);
...
[] (v1rawInit = 0) -> (v1raw' = 10) & (v1rawInit' = 1);

endmodule

module initv2raw = initv1raw [v1raw = v2raw, v1rawInit = v2rawInit] endmodule

Listing 5.6.: Initialization of 𝑣1,𝑣2 in PRISM

We can rewrite this MDP as an DTMC using uniformly distributed probabilities, which cuts
down on the number of choices but does not impact the number of states or transitions. Such a
rewrite is shown in themodule initv1rawDTMC.

module initv1rawDTMC
[] (v1rawInit = 0) -> 1/11 : (v1raw' = 0) & (v1rawInit' = 1) +

1/11 : (v1raw' = 1) & (v1rawInit' = 1);
...
1/11 : (v1raw' = 10) & (v1rawInit' = 1);

endmodule

Listing 5.7.: Initialization of 𝑣1 as DTMC in PRISM

Analogous to the initialization in initv1raw we can proceed with the error models. We will
initialize these starting from a negative value and since both v1e and v2e share the same bounds,
we can again use a rewrite to initialize the latter easily.

module initv1e
[] (v1eInit = 0) -> (v1e' = -5) & (v1eInit' = 1);
[] (v1eInit = 0) -> (v1e' = -4) & (v1eInit' = 1);
[] (v1eInit = 0) -> (v1e' = -3) & (v1eInit' = 1);
...
[] (v1eInit = 0) -> (v1e' = 5) & (v1eInit' = 1);

endmodule

module initv2e = initv1e [v1e = v2e, v1eInit = v2eInit] endmodule

Listing 5.8.: Initialization of 𝑒1, 𝑒2 in PRISM

Initializing theweighting takes a bitmorework.Wewill need to transfer the PDF to the PRISM
model, which we have opted to do using a Python script. A�er choosing res𝑤 we integrate the
PDF from 0 to 1 in 1

res𝑤
steps of res𝑤 and set the w to the respective step times 1

res𝑤
. Using this

method, we need to either omit the very ûrst value (0) or the very last (1); here, we opted to let
the sequence run from 1 to 100, such that w here could never actually reach 0, although in the
actual model it could with a very low probability.
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Note that res𝑤 has a notable impact on the total model complexity. It not only determines the
bounds of w, but also the complexity of the initialization routine and the bounds of parameters
calculated using w.

module initw
[] (wInit = 0) -> 0.00720808394646841 : (w' = 1) & (wInit' = 1) +

0.00729191001115681 : (w' = 2) & (wInit' = 1) +
0.0073755584209887 : (w' = 3) & (wInit' = 1) +
...
0.0106112725180697 : (w' = 100) & (wInit' = 1);

endmodule

Listing 5.9.: Initialization of 𝑤 in PRISM

We have tested several values for res𝑤 while not modifying any of the other parameters and
got the results listed in Table 5.3 for the amount of states and transitions.

res𝑤 0.2 0.1 0.05 0.02 0.01
States 247988 757320 1705464 2723428 7792136
Transitions 648673 1679322 3635190 6377309 16733386

Table 5.3.: Eòect of diòerent values of res𝑤 on state and transition amount

A�er all the initialization is done, we will do the actual calculations and transformations. In
the module simple we initialize the local variables with the correct bounds and advance the
global state variable to 1 as soon as all ‘raw’ variables are initialized. _en we use two disjunct
calculation routines for v1 and v2 to ensure that v1 does not get below 0.

Since we must use integers for the calculations and cannot divide here, the bounds of the
calculated variables are way larger than that of their initialized counterparts. A�er v1 and v2 are
initialized,we ûrst initialize r and then rw and rp, also saving the current value of v2 in prev2 to
keep the history. If the iteration count speciûed by k is not yet met,we reset both the initialization
variables aswell as state to proceedwith the next iteration; note that each iteration exponentially
increases complexity.

module model
// computed values in range 0 to 10.5
v1 : [0..1050];
v2 : [0..1050];
// computed r in range 0 to 21
r : [0..2100];
// computed rw in range 0 to 21
rw : [0..210000];
// value v2 from previous iteration in range 0 to 10.5
prev2 : [0..1050] init 0;
// computed rp in range 0 to 21
rp : [0..2100];
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// state variable to ensure sequential execution order
state: [0..5] init 0;

// begin calculations when everything is initialized
[] (v1rawInit = 1 & v2rawInit = 1 & v1eInit = 1 & v2eInit = 1 & wInit = 1 &

state = 0) -> (state' = 1);→˓

// calculate v1, v2 and ensure that v1 never gets negative
[] (state = 1 & (v1e >= 0 | 10 * v1raw > -1 * v1e)) -> (v1' = v1raw * 100 + v1e

* 10) & (v2' = v2raw * 100 + v2raw * v2e) & (state' = 2);→˓

[] (state = 1 & (v1e < 0 & 10 * v1raw <= -1 * v1e)) -> (v1' = v1raw * 100) &
(v2' = v2raw * 100 + v2raw * v2e) & (state' = 2);→˓

// calculate r after v1, v2
[] (state = 2) -> (r' = v1 + v2) & (state' = 3);

// calculate rw, rp and save v2 for next iteration
[] (state = 3) -> (rw' = r * w) & (rp' = v1 + prev2) & (prev2' = v2) & (state'

= 4);→˓

// perform k iterations, then transition to final state, ending calculations
[] (state = 4 & i < (k - 1)) -> (v1rawInit' = 0) & (v2rawInit' = 0) & (v1eInit'

= 0) & (v2eInit' = 0) & (wInit' = 0) & (state' = 0) & (i' = i + 1);→˓

[] (state = 4 & i >= (k - 1)) -> (state' = 5);
endmodule

Listing 5.10.:Main module of PRISM model, handling the actual calculations of 𝑟, 𝑟𝑝, 𝑟𝑤

5.4.2. Veriûcation
In PRISM, we can verify all given requirements, both probabilistic and non-probabilistic. We
will express these as properties and verify them using the Storm model checker, which can take
PRISM models as input but in our tests turned out to be a lot faster.

Note that sincewe have created an MDPmodel,we cannot simply check for probabilities using
P=?, we have to check for the minimum or maximum probability given the nondeterministic
choices, which is done using the Pmin, Pmax operators respectively.

Note that in the queries listed in Table 5.4, & denotes a logicalAND, | denotes a logical OR and
|| denotes a dependence, such that e.g. P=? [ F b>10 || F a<10 ] returns the probability
of b>10 eventually being true given that a<10 holds. We use this to make all queries depend on
state = 5, signaling a ûnished calculation.

_e requirements NP1 – NP3 could be checked just like in the previous two tools and all
probabilities returned are equal to 1, which means that the requirements aremet. Note that for
NP1 andNP3,we use Pmax to check for themaximum probability of the requirement being met –
since it does only need to hold in at least one iteration – but for NP2 we use Pmin to check for
theminimum probability as it needs to always hold.

Unfortunately, NP4, NP5 and P5 – every query requiring k = 2 – makes the Storm model
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Req. Query Tool
Output

Veriûcation
Result

NP1 Pmax=? [ F r >= 110 * (v1raw + v2raw) || F state = 5 ] 1 Ë

NP2 Pmin=? [ state != 5 U (state = 5 & (r <= 110 * (v1raw +
v2raw) | r >= 90 * (v1raw + v2raw))) ] 1 Ë

NP3 Pmax=? [ F r >= v2raw || F state = 5 & (v1raw = 0 & v2e
<= 0) ] 1 Ë

NP4 Pmax=? [ F rp > 1000 * v1raw || F state = 5 ] OOM �

NP5 Pmax=? [ F rp >= 100 * v1raw + v1 + v2 || F state = 5 ] OOM �

P1
Pmin=? [ F rw >= 100000 || F (state = 5 & w >= 70) ]
Pmax=? [ F rw >= 100000 || F (state = 5 & w >= 70) ]

0

1

P2
Pmin=? [ F rw>=100000 || F (state=5 & (v1raw+v2raw)>=10) ]
Pmax=? [ F rw>=100000 || F (state=5 & (v1raw+v2raw)>=10) ]

0

1

P3 Pmin=? [ F rw > 200000 || state = 5 ]
Pmax=? [ F rw > 200000 || state = 5 ]

0

0.0534

P4

Pmin=? [ F r >= 100 * (v1raw + v2raw) || F state = 5 ]
Pmin=? [ F r <= 100 * (v1raw + v2raw) || F state = 5 ]
Pmax=? [ F r >= 100 * (v1raw + v2raw) || F state = 5 ]
Pmax=? [ F r <= 100 * (v1raw + v2raw) || F state = 5 ]

0

0

1

1
P5 Pmin=? [ F rp >= 200 * v1raw || F state = 5 ] OOM �

Legend:Ë Satisiûed,é Violated, � Not veriûable
Table 5.4.:Veriûcation of the PRISM model of our case study

checker eventually run out ofmemory during themodel building step,making them unveriûable
using our setup. We are able to check simpler requirements using the exploration engine of
Storm for k = 2, since it does not build the full model but only the subset required for the
veriûcation. But since the exploration engine does not support the dependency operator, we
cannot use it for our queries here. Reducing the resolution of the weighting parameter also does
not help to build the model, the state space needs to be reduced drastically for the model to
build requiring a change of 𝑣1,𝑚𝑎𝑥,𝑣2,𝑚𝑎𝑥, 𝑒1,𝑚𝑎𝑥 and 𝑒2𝑚𝑎𝑥. Since this would change themodel
behaviour, we consider these queries to be unveriûable here; how the parameters aòect the state
space and for which parameters amodel could be built is detailed in Section 6.2.
For the probabilistic requirements P1 – P4 we get minimum andmaximum probabilities as

well, but without knowing the distribution for the errors, we cannot reliably give a probability
estimate for these requirements; we only know that they hold in some cases and do not in others.
Note that for P3, we get a very small maximum probability. Looking at the query, the reason
is obvious: for 𝑟𝑤 > 20, all input parameters need to be quite large and very near their upper
bound and the weighting needs to be very close to 1. _emaximum probability for P3 is thus the
probability that, given 𝑣1 = 𝑣2 = 10, 𝑒1 = 0.5, 𝑒2 = 0.05, 𝑤 is large enough such that 𝑟𝑤 > 20

holds true.
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5.5. Summary
Having implemented themodel, or at least parts of it, in all languages, we can now summarize
the results.

mCRL2 Lustre + Kind 2 PRISM /
Storm

�oating point numbers q q3 q

error models 63 63 63

stochastic input q q3

access to data from previous iterations q3 63

unlimited iterations q3 q3 q �

Legend:q Native support,6 Implementable,3 Veriûable, � Problems during veriûcation
Table 5.5.: Summary of the tool applicability a�er the evaluation

For every tool but Lustre &Kind2,�oating point numbers are supported, but not in veriûcation.
For the veriûcation, values from enumerable domains need to be used, such that discretization is
required.

With the parts of themodel implemented inmCRL2, unlimited iterations (by eventually ending
up in the initial state again) are possible. Since Lustre uses an iteration-based concept natively, it
can deal with checking an unlimited amount of iterations, including support for using data from
an arbitrary amount of previous iterations.
For the PRISM model, we were able to implement every single property of themodel, but at

the cost of a very large and exponentially growing state space.With themodel parameters used
in this chapter, no more than three iterations could be veriûed and no full model could be build
for more than two iterations. Attempting to verify more iterations resulted in an out-of-memory
error.
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A�er having implemented themathematical model in the three diòerent languages and having
performed the veriûcation, we can discuss the results obtained and the challenges faced.

6.1. Tool Applicability
As mentioned in Section 1.3, Lustre andKind 2 have been successfully used for the veriûcation of
SIMULINKmodels and other safety-critical reactive systems. Itwould have been a greatmatch for
our problem if it were not for the uncertainty in the input parameters, as implementing the basic
calculations and those involving the history was straightforward. Only a single non-probabilistic
requirement could not be veriûed due to a circular dependency. For some parts of the function
without such uncertainty, we can use Lustre andKind 2 to verify them as a closed system and use
the results to reason about the system as a whole.
Although explicitly designed for reactive systems, mCRL2 was the least suited tool for our

model. Its strengths lie in the speciûcation and veriûcation of highly parallel communicating
systems, but itwasnotwell-suited forourverydata-intensive, complexbut rather sequentialmodel.
_e enumeration of possible input parameters required discretization that severely limited the
scope of the implementation, an implementation of the history-dependent 𝑟𝑝 was not possible
since dynamic data could not be saved or read and the veriûcation of parameters depending
on enumerated input parameters was rather cumbersome. _e tool also advertises support for
probabilistic inputs and giving input distributions for input parameters is possible, but with such
distributions speciûed, veriûcation is not yet possible, only simulation, which leads to the feature
not being applicable in our case.

Using the PRISM speciûcation, we were able to implement the complete model including
the stochastic parameter, although we had to apply discretization to the probability distribution
function. Unlikewith the other models, the complexity in the PRISM model grew so high thatwe
were required to severely limit the amount of iterations and even then we were not able to verify
all requirements without further reducing the complexity by scaling down themaximum values
of the parameters.

To summarize, even though we designed a seemingly simplemathematical model, it provided
considerable challenges for existing model-checking approaches.We have used state-of-the-art
tools to attempt to verify the requirements on a powerful machine and were not able to obtain
reliable results for every part of the system in a single tool.

6.2. Complexity Estimation
Being able to estimate the complexity of amodel is very valuable, especially when transitioning
from academic use to industry use,where projects are o�entimes orders ofmagnitude larger than
in academia, in which models are o�en closer to small proof-of-concepts.

In our model,we dynamically changed the following bounds and recorded both the number of
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states and transitions (in case themodel could be built) to estimate the complexity: 𝑣1,𝑚𝑎𝑥,𝑣2,𝑚𝑎𝑥,

𝑒1,𝑚𝑎𝑥, 𝑒2𝑚𝑎𝑥 as well as res𝑤. For the PRISM model, the change in parameters led to the changes
displayed in Table 6.1.

𝑣1,max 𝑣2,max 𝑒1,max 𝑒2,max res𝑤 k states transitions time
(s)

mem
(Byte)

1 1 1 1 5 1 1331 3955 23 49532
3 3 2 2 10 1 27780 64400 128 52308
5 5 3 3 20 1 406896 886004 1645 102888
10 10 5 5 50 1 2723428 6377309 10544 334060
10 10 5 5 100 1 7792136 16733386 30744 944532
5 5 1 1 20 2 289530187 735988121 1241919 31280316
5 5 3 3 20 2 �

10 10 5 5 100 2 �

Table 6.1.: Eòect of the input parameter range on themodel complexity

_is is just an excerpt of our measurements, but it shows how even small changes to the range
of input parameters have increasingly large eòects on both the complexity of the generatedmodel
and the time andmemory required to build it.
For the last two listed parameter conûgurations, a full model build was not possible, but veriû-

cation results could be attained using the exploration engine of the Stormmodel checker for
supported properties.

We can also rewrite theMDP as a DTMC by assigning equal probabilities to all nondetermin-
istic transitions. Representing theMDP as an DTMC, all choices are eliminated and themodel
becomes fully deterministic. _is does severely aòect the veriûcation results, though, since choos-
ing the input parameters now aòects the probability of the output; if the distribution is not known,
this change eliminates themodel validity.

In a similar fashion, we can change the header of the DTMC-converted model to represent
an MDP. When we do this to indicate an MDP to themodel checker which actually is a DTMC,
choices are re-introduced,butmodelbuilding timeusingStormis almostnot aòected.As Table 6.2
shows, neither of those actions aòect the amount of states or transitions.

DTMC MDP DTMC as MDP
States 7792136 7792136 7792136
Transitions 16733386 16733386 16733386
Choices 14721994 7879114
Time to build 30s 42s 31s

Table 6.2.: Eòect of changing themodel type on state, transition and choice amount

For our veriûcation,we have used theMDP model,which – according to the time to build and
the amount of choices – is themost complex one. Selecting any of the other leads to faster model
building and veriûcation times, overall lower complexity – due to less or no nondeterministic
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choices – but aòects the output probability. If an MDP turns out to not be veriûable, it might be
worth using this method to attempt veriûcation again, but the eòect on output probability needs
to be thoroughly calculated beforehand and considered during veriûcation.

6.3. _reats to Validity
Even given this small model, we were not able to verify an unmodiûed version of it in any of
the chosen tools. We had to work with discretization everywhere, which is to be expected when
implementing a model in any kind of computer language, but even this is already a stray from
the purely mathematical concept of themodel.
Additionally, each language and tool had its own shortcomings that had to be worked with.

Both Lustre andmCRL2 do not support stochastic veriûcation, so part of themodel could not be
implemented. In the PRISM model, we were able to implement every part of themodel, but had
to severely limit the amount of iterations making it more of a simulation of the model than an
actual implementation.
Although mCRL2 has built-in veriûcation support for �oating point numbers, veriûcation of

inputs in a given range requires enumeration using the sum operator, which does not support the
Real data type as it is not enumerable. _is means that we had to enumerate the inputs using the
domain of natural numbers and such apply large-style discretization, limiting the validity of the
resulting veriûcation results.

_e Lustremodel itself can work with �oating point numbers without problems, such that the
Lustre model is the only one not requiring any discretization whatsoever. During veriûcation,
though, theKind2 solver emits severalwarningswhich need to be kept inmindwhen interpreting
the veriûcation results.

_e amount of discretization required to implement the model in mCRL2 drastically limits
the validity of the results. Since only enumerable domains could be worked with, choosing
𝑣1,raw,𝑣2,raw, 𝑒1 and 𝑒2 from natural numbers only made the set of possible outcomes of this
implementation very small compared to the others.

Since the PRISM model allows for stochastic veriûcation but does not natively support the
probability distribution function, the amount of discretization required for this model is the
highest, since the PDF needs to be converted to amodule with probabilities assigning values to
𝑤. In the evaluation we chose a high enough discretization to achieve pretty reliable results, but
this also resulted in an increased complexity of the overall model, aggravating the veriûcation of
multiple iterations.
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We have developed a small yet complex mathematical model and attempted to implement it
and verify requirements imposed over it using three diòerent model-checking approaches for
reactive systems. During the implementation of the model in the diòerent languages, we have
found and partly solved challenges unique to the language-speciûc modeling approach. With
the state-of-the-art tools available, we did not succeed in fully veriûying all requirements with a
single tool.

_is highlights the sheer complexity of model-checking modern systems, where properties
like error models and unreliable input need to be taken into consideration. _e complexity of
model-checking systems has been a problem for decades and while several approaches have
been developed to attempt to deal with the exploding state space problem, vastly growing model
complexity and size are to be dealt with.

Regarding the properties speciûed in the beginning, we can now estimate how they aòect
the complexity of the model and how well state-of-the-art tools can handle them. In the end,
none of the surveyed tools was able to completely verify our model to the full extent given the
requirements we speciûed.

Support for �oating point numbers is present in all surveyed tools to some extent, although
only Kind 2 is able to do model-checking using the built-in �oating point data type of Lustre,
all other tools required some amount of discretization to emulate �oating point numbers using
the domain of natural numbers. As expected, the implementation of the error models was quite
straight-forward in all tools then, since that essentially just required implementing ranges for the
input parameters.

Implementing the history-dependent veriûcation unfortunately was not possible in mCRL2,
since it focuses on modeling the control �ow of a system and does not provide support for saving
and reading data in an iteration-basedmodel. Lustre has built-in support for the pre-operator,
which is a native implementation of the history concept; it can also be chained to go backmultiple
iterations. Kind 2 also supports veriûcation of this operator,making the implementation of this
part of themodel very easy for these tools. For PRISM, no native pre-like operator is available,
but we managed to implement the concept using an additional variable and an iteration-like
state reset concept. Unfortunately using this approach, every additional iteration leads to a large
exponential growth as can be seen in Section 6.2; with an increase of the iteration count 𝑘 by
one leading to an increase in states to 25 ·#(𝑘 − 1)𝑘 , where #(𝑘) gives the amount of states for 𝑘
iterations. Although a lot of techniques have already been applied by themodel checker to reduce
state space explosion, this does absolutely not scale well and for our model with the parameters
used inChapter 4 already fails to fully build for 𝑘 = 2 iterations and does not allow for veriûcation
even using the exploration-engine for 𝑘 = 3 iterations.

_e unreliable input parameters led to the need for stochastic veriûcation, which is not im-
plementable in Lustre using only the very basic operators available. WhilemCRL2 does support
specifying probability distributions for input parameters, the resulting models can only be simu-
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lated, not veriûed, such that in our case the feature was not applicable at all. Being probabilistic
model checkers, PRISM and Storm natively support the veriûcation ofmodels with probabilistic
input parameters. Although we had to discretize our probability distribution function for this
approach, we were able to choose the discretization ûne enough to achieve reliable results. Tool
support for stochastic veriûcation is not widely adopted as of yet such that – if this is a hard
requirement for the choice of tools – the set of available options is rather small. Trade-oòs have to
be considered when opting for this approach, since the complexity ofmodels of reactive systems
turn out to be several scales larger for these tools than for ‘traditional’ model checking tools.

_e concept ofmodel checking is decades old and so is the development of various techniques
to reduce the state space. Several of these methods will be introduced here, with references to
literature with further information.

On-the-�y reduction[23] describes a group of techniques to reduce the state space during explo-
ration, e.g. by recognizing duplicate/equivalent states andmerging the paths, thus reducing the
actual state spacewithout losing any information in themodel. _ere are various algorithms here
that can be applied andmost of them can be used together. One of themost well known is partial
order reduction[8, 9, 23], which aims to reduce the possible orderings of asynchronous/parallel
processes.

_e category predicate abstraction and reûnement[23] contains techniques to abstract states
using both over- & under-approximation. An example of this is counterexample-guided abstrac-
tion reûnement[8–10, 23] (CEGAR), which takes the property into account, over-approximates
the model and abstracts away states that violate properties, while iteratively reûning the over-
approximated property to get closer to the actual veriûcation query. For probabilistic systems,
abstraction-based reûnement[8] replaces probabilistic transitions with nondeterministic ones to
abstract ‘safe’ states considering this over-approximation. Counter-example guided reûnements[15]
can also be applied to probabilistic models, working similar to CEGAR. Under-approximation
reûnement[23] carefully removes states in a less strict abstraction of the model while ensuring
that all safety properties for the system are still valid. Taking the property into account during the
veriûcation process is also possible and used e.g. in an approach called strategy synthesis which
has been shown to work with MDPs[21].
BoundedModel Checking[8, 9] (BMC) applies a technique similar to the one we used to limit

the iterations in our PRISM model. Given a bound 𝑘, a formula is said to be valid if it cannot be
disproven by a counterexample of length 𝑘._is eòectively gives an upper bound for the generated
state space, even if it otherwise were to be inûnite, and is widely used in model checking tools
available today. _ere are various methods that build on top of BMC, a lot of which also work
with probabilistic systems[8].

SymbolicModel Checking[8, 9] (SMC) attempts to represent themodel, given in a ûnite-state
machine-like format, using boolean equations and using techniques to reduce and simplify the
attained terms. Most of the approaches to SMC represent the formulae using binary decision
diagrams, since there exist various algorithms to eòectively generateminimized representations
of them.
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7. Conclusion

While reducing the model complexity is the most eòective way to increase veriûcation per-
formance, it is not the only way towards amore eõcient veriûcation of large-scalemodels. We
have developed our probabilisticmodel in the input format for the PRISM model checker and
have extensively tested various conûgurations of it before we began also using the Storm model
checker. Supporting the same input format, we were easily able to compare both model checkers.
Being implemented in C++ instead of Java, the Storm model checker turned out to build and
verify models faster by a scale of 10 while also achieving a lot lower RAM usage. We have found
several parameter conûgurations for which themodel was not veriûable using the PRISM model
checker with which the Storm model checker successfully completed the veriûcation.

While both PRISM and Stormhave several veriûcation engines available, only the Stormmodel
checker provides the exploration engine, which is especially suited to models with a very large
state space[11], due to this the usage of techniques using machine learning for the reduction of
the state space[2]. Instead of building the full model and then performing veriûcation, it takes
the veriûcation query into account from the very beginning and only builds the relevant parts of
themodel on-the-�y during veriûcation, enabling it to check queries on models that could not
be built fully due to a too large state space. Unfortunately, using the exploration engine, the
dependency operator is not available for veriûcation queries such that none of our requirements
could be veriûed using this engine.

Our survey has shown that while there has been a lot of progress in model checking tools,
with growing system complexity this problem is still a very challenging one to tackle. Even for
a simpliûed case study of our original model, we were not able to attain fully reliable results
using any of the used approaches, although we were able to verify several rather complex system
properties, which of course is better than gaining no results or using test-basedmethods. With
both further research into techniques to deal with state space explosion as well as even more
mature, eõcient implementations ofmodel checking tools,we are sure that progress can bemade
to not only keep up with system andmodel complexity, but also to eõciently verify such models.
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Appendix

_is chapter contains the full code for all themodels that have been used for the veriûcation
process. Further tools and documentation is available on the disk attached to this paper.

A. Lustre &Kind 2Model

1 contract ModelSpec(v1raw, v1e, v2raw, v2e : real) returns (r, rp : real);
2 let
3 -- limits for the raw input parameters
4 assume v1raw >= 0.0;
5 assume v1raw <= 10.0;
6 assume v2raw >= 0.0;
7 assume v2raw <= 10.0;
8 -- limits for the errors
9 assume v1e >= -0.5;

10 assume v1e <= 0.5;
11 assume v2e >= -0.05;
12 assume v2e <= 0.05;
13 -- ensure that the calculated values stay within defined bounds (v1, v2 not get

negative)→˓

14 assume (v1raw + v1e) >= 0.0;
15 assume (v1raw + v1e) <= 10.5;
16 assume (v2raw + v2raw * v2e) >= 0.0;
17 assume (v2raw + v2raw * v2e) <= 10.5;
18
19 -- default mode, required to perform mode-based model-checking
20 mode def (
21 require v1raw >= 0.0;
22 require v2raw >= 0.0;
23 );
24
25 guarantee not (r >= (v1raw + v2raw) * 1.1); -- NP1
26 guarantee r <= ((v1raw + v2raw) * 1.1 + 0.5) and (r >= (v1raw + v2raw) * 0.9 - 0.5);

-- NP2→˓

27
28 mode NP3 (
29 require v2e <= 0.0;
30 require v1raw = 0.0;
31
32 ensure not (r > v2raw);
33 );
34
35 mode NP4 (
36 require v1raw >= 1.0;
37
38 ensure not (rp > 10.0 * v1raw);
39 );
40
41 guarantee not (rp >= v1raw + v1 + v2); -- NP5
42 tel
43
44 node Model(v1raw, v1e, v2raw, v2e : real) returns (r, rp : real);
45 (*@contract import ModelSpec(v1raw, v1e, v2raw, v2e) returns (r, rp); *)
46 var

III
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47 v1, v2 : real;
48 let
49 v1 = v1raw + v1e;
50 v2 = v2raw + v2raw * v2e;
51
52 r = v1 + v2;
53 rp = v1 + 0.0 -> pre(v2);
54 tel

IV
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B. mCRL2Model

1 % parametrized actions for the input values
2 act v1raw, v2raw: Nat;
3 act v1e, v2e: Int;
4 % parametrized actions for the calculated values
5 act v1, v2, r: Real;
6
7 proc P = sum v1r, v2r: Nat, v1err, v2err: Int . % enumerate raw, error input parameters
8 % bounds for input parameters
9 ((0 <= v1r && v1r <= 10) && (0 <= v2r && v2r <= 10) &&

10 (v1err >= -5 && v1err <= 5) && (v2err >= -5 && v2err <= 5) &&
11 % ensure that calculated values stay within bounds
12 (((v1r + (v1err/10)) >= 0) && ((v1r/10 + (v1err/10)) <= 105/10)) &&
13 (((v2r + (v2r * (v2err/100))) >= 0) && ((v2r + (v2r * (v2err/100))) <=

105/10)))→˓

14 % traverse states using parametrized actions to allow for model checking
15 -> v1raw(v1r) . v2raw(v2r) . v1e(v1err) . v2e(v2err)
16 % calculate values for v1, v2
17 . v1(v1r + (v1err/10)) . v2(v2r * (v2err/100))
18 % calculate value for r and restart process
19 . r((v1r + (v1err/10)) + v2r + (v2r * (v2err/100))) . P;
20
21 init P;

V
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C. PRISM Model

1 mdp
2
3 // raw values 0 to 10
4 global v1raw: [0..10];
5 global v2raw: [0..10];
6 // error -0.5 to 0.5
7 global v1e: [-5..5];
8 // error -0.05 to 0.05
9 global v2e: [-5..5];

10 // weighting 0 to 1
11 global w: [0..100];
12
13 // boolean initialization variables
14 global v1rawInit: [0..1] init 0;
15 global v2rawInit: [0..1] init 0;
16 global v1eInit: [0..1] init 0;
17 global v2eInit: [0..1] init 0;
18 global wInit: [0..1] init 0;
19
20 // number of iterations
21 const int k = 1;
22 global i: [0..k];
23
24 module model
25 // computed values in range 0 to 10.5
26 v1 : [0..1050];
27 v2 : [0..1050];
28 // computed r in range 0 to 21
29 r : [0..2100];
30 // computed rw in range 0 to 21
31 rw : [0..210000];
32 // value v2 from previous iteration in range 0 to 10.5
33 prev2 : [0..1050] init 0;
34 // computed rp in range 0 to 21
35 rp : [0..2100];
36
37 // state variable to ensure sequential execution order
38 state: [0..5] init 0;
39
40 // begin calculations when everything is initialized
41 [] (v1rawInit = 1 & v2rawInit = 1 & v1eInit = 1 & v2eInit = 1 & wInit = 1 &

state = 0) -> (state' = 1);→˓

42
43 // calculate v1, v2 and ensure that v1 never gets negative
44 [] (state = 1 & (v1e >= 0 | 10 * v1raw > -1 * v1e)) -> (v1' = v1raw * 100 +

v1e * 10) & (v2' = v2raw * 100 + v2raw * v2e) & (state' = 2);→˓

45 [] (state = 1 & (v1e < 0 & 10 * v1raw <= -1 * v1e)) -> (v1' = v1raw * 100) &
(v2' = v2raw * 100 + v2raw * v2e) & (state' = 2);→˓

46
47 // calculate r after v1, v2
48 [] (state = 2) -> (r' = v1 + v2) & (state' = 3);
49
50 // calculate rw, rp and save v2 for next iteration
51 [] (state = 3) -> (rw' = r * w) & (rp' = v1 + prev2) & (prev2' = v2) &

(state' = 4);→˓

VI
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52
53 // perform k iterations, then transition to final state, ending calculations
54 [] (state = 4 & i < (k - 1)) -> (v1rawInit' = 0) & (v2rawInit' = 0) &

(v1eInit' = 0) & (v2eInit' = 0) & (wInit' = 0) & (state' = 0) & (i' = i +
1);

→˓

→˓

55 [] (state = 4 & i >= (k - 1)) -> (state' = 5);
56 endmodule
57
58 module initv1raw
59 [] (v1rawInit = 0) -> (v1raw' = 0) & (v1rawInit' = 1);
60 [] (v1rawInit = 0) -> (v1raw' = 1) & (v1rawInit' = 1);
61 [] (v1rawInit = 0) -> (v1raw' = 2) & (v1rawInit' = 1);
62 [] (v1rawInit = 0) -> (v1raw' = 3) & (v1rawInit' = 1);
63 [] (v1rawInit = 0) -> (v1raw' = 4) & (v1rawInit' = 1);
64 [] (v1rawInit = 0) -> (v1raw' = 5) & (v1rawInit' = 1);
65 [] (v1rawInit = 0) -> (v1raw' = 6) & (v1rawInit' = 1);
66 [] (v1rawInit = 0) -> (v1raw' = 7) & (v1rawInit' = 1);
67 [] (v1rawInit = 0) -> (v1raw' = 8) & (v1rawInit' = 1);
68 [] (v1rawInit = 0) -> (v1raw' = 9) & (v1rawInit' = 1);
69 [] (v1rawInit = 0) -> (v1raw' = 10) & (v1rawInit' = 1);
70 endmodule
71
72 module initv2raw = initv1raw [v1raw = v2raw, v1rawInit = v2rawInit] endmodule
73
74 module initv1e
75 [] (v1eInit = 0) -> (v1e' = -5) & (v1eInit' = 1);
76 [] (v1eInit = 0) -> (v1e' = -4) & (v1eInit' = 1);
77 [] (v1eInit = 0) -> (v1e' = -3) & (v1eInit' = 1);
78 [] (v1eInit = 0) -> (v1e' = -2) & (v1eInit' = 1);
79 [] (v1eInit = 0) -> (v1e' = -1) & (v1eInit' = 1);
80 [] (v1eInit = 0) -> (v1e' = 0) & (v1eInit' = 1);
81 [] (v1eInit = 0) -> (v1e' = 1) & (v1eInit' = 1);
82 [] (v1eInit = 0) -> (v1e' = 2) & (v1eInit' = 1);
83 [] (v1eInit = 0) -> (v1e' = 3) & (v1eInit' = 1);
84 [] (v1eInit = 0) -> (v1e' = 4) & (v1eInit' = 1);
85 [] (v1eInit = 0) -> (v1e' = 5) & (v1eInit' = 1);
86 endmodule
87
88 module initv2e = initv1e [v1e = v2e, v1eInit = v2eInit] endmodule
89
90 module initw
91 [] (wInit = 0) -> 0.00720808394646841 : (w' = 1) & (wInit' = 1) +
92 0.00729191001115681 : (w' = 2) & (wInit' = 1) +
93 0.0073755584209887 : (w' = 3) & (wInit' = 1) +
94 0.00745900085035024 : (w' = 4) & (wInit' = 1) +
95 0.00754220874803646 : (w' = 5) & (wInit' = 1) +
96 0.00762515335264172 : (w' = 6) & (wInit' = 1) +
97 0.007707805708289 : (w' = 7) & (wInit' = 1) +
98 0.0077901366806846 : (w' = 8) & (wInit' = 1) +
99 0.00787211697349145 : (w' = 9) & (wInit' = 1) +

100 0.0079537171450014 : (w' = 10) & (wInit' = 1) +
101 0.00803490762510252 : (w' = 11) & (wInit' = 1) +
102 0.00811565873252124 : (w' = 12) & (wInit' = 1) +
103 0.00819594069233258 : (w' = 13) & (wInit' = 1) +
104 0.00827572365371708 : (w' = 14) & (wInit' = 1) +
105 0.00835497770795787 : (w' = 15) & (wInit' = 1) +
106 0.00843367290665765 : (w' = 16) & (wInit' = 1) +

VII
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107 0.00851177928016469 : (w' = 17) & (wInit' = 1) +
108 0.00858926685618736 : (w' = 18) & (wInit' = 1) +
109 0.00866610567858883 : (w' = 19) & (wInit' = 1) +
110 0.00874226582633714 : (w' = 20) & (wInit' = 1) +
111 0.00881771743260257 : (w' = 21) & (wInit' = 1) +
112 0.00889243070397935 : (w' = 22) & (wInit' = 1) +
113 0.00896637593981819 : (w' = 23) & (wInit' = 1) +
114 0.00903952355165172 : (w' = 24) & (wInit' = 1) +
115 0.00911184408269317 : (w' = 25) & (wInit' = 1) +
116 0.00918330822739516 : (w' = 26) & (wInit' = 1) +
117 0.009253886851045 : (w' = 27) & (wInit' = 1) +
118 0.0093235510093839 : (w' = 28) & (wInit' = 1) +
119 0.0093922719682264 : (w' = 28) & (wInit' = 1) +
120 0.00946002122306727 : (w' = 30) & (wInit' = 1) +
121 0.00952677051865214 : (w' = 31) & (wInit' = 1) +
122 0.00959249186849526 : (w' = 32) & (wInit' = 1) +
123 0.00965715757432889 : (w' = 33) & (wInit' = 1) +
124 0.00972074024545805 : (w' = 34) & (wInit' = 1) +
125 0.00978321281801037 : (w' = 35) & (wInit' = 1) +
126 0.0098445485740542 : (w' = 36) & (wInit' = 1) +
127 0.00990472116057367 : (w' = 37) & (wInit' = 1) +
128 0.00996370460827489 : (w' = 38) & (wInit' = 1) +
129 0.0100214733502111 : (w' = 39) & (wInit' = 1) +
130 0.0100780022402017 : (w' = 40) & (wInit' = 1) +
131 0.010133266571033 : (w' = 41) & (wInit' = 1) +
132 0.0101872420924159 : (w' = 42) & (wInit' = 1) +
133 0.0102399050286902 : (w' = 43) & (wInit' = 1) +
134 0.0102912320962463 : (w' = 44) & (wInit' = 1) +
135 0.0103412005206602 : (w' = 45) & (wInit' = 1) +
136 0.0103897880535107 : (w' = 46) & (wInit' = 1) +
137 0.0104369729888724 : (w' = 47) & (wInit' = 1) +
138 0.0104827341794593 : (w' = 48) & (wInit' = 1) +
139 0.0105270510524079 : (w' = 49) & (wInit' = 1) +
140 0.01056990362468 : (w' = 50) & (wInit' = 1) +
141 0.0106112725180696 : (w' = 51) & (wInit' = 1) +
142 0.0106511389738006 : (w' = 52) & (wInit' = 1) +
143 0.0106894848666954 : (w' = 53) & (wInit' = 1) +
144 0.0107262927189037 : (w' = 54) & (wInit' = 1) +
145 0.0107615457131754 : (w' = 55) & (wInit' = 1) +
146 0.0107952277056612 : (w' = 56) & (wInit' = 1) +
147 0.0108273232382323 : (w' = 56) & (wInit' = 1) +
148 0.0108578175503009 : (w' = 57) & (wInit' = 1) +
149 0.0108866965901316 : (w' = 59) & (wInit' = 1) +
150 0.0109139470256325 : (w' = 60) & (wInit' = 1) +
151 0.0109395562546102 : (w' = 61) & (wInit' = 1) +
152 0.0109635124144827 : (w' = 62) & (wInit' = 1) +
153 0.0109858043914368 : (w' = 63) & (wInit' = 1) +
154 0.0110064218290202 : (w' = 64) & (wInit' = 1) +
155 0.011025355136159 : (w' = 65) & (wInit' = 1) +
156 0.0110425954945964 : (w' = 66) & (wInit' = 1) +
157 0.0110581348657331 : (w' = 67) & (wInit' = 1) +
158 0.0110719659968771 : (w' = 68) & (wInit' = 1) +
159 0.0110840824268839 : (w' = 69) & (wInit' = 1) +
160 0.0110944784911861 : (w' = 70) & (wInit' = 1) +
161 0.0111031493262088 : (w' = 71) & (wInit' = 1) +
162 0.01111009087316 : (w' = 72) & (wInit' = 1) +
163 0.0111152998811963 : (w' = 73) & (wInit' = 1) +
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164 0.0111187739099629 : (w' = 74) & (wInit' = 1) +
165 0.0111205113314961 : (w' = 75) & (wInit' = 1) +
166 0.0111205113314959 : (w' = 76) & (wInit' = 1) +
167 0.0111187739099629 : (w' = 77) & (wInit' = 1) +
168 0.0111152998811963 : (w' = 78) & (wInit' = 1) +
169 0.01111009087316 : (w' = 79) & (wInit' = 1) +
170 0.0111031493262088 : (w' = 80) & (wInit' = 1) +
171 0.0110944784911864 : (w' = 81) & (wInit' = 1) +
172 0.0110840824268835 : (w' = 82) & (wInit' = 1) +
173 0.0110719659968771 : (w' = 83) & (wInit' = 1) +
174 0.0110581348657329 : (w' = 84) & (wInit' = 1) +
175 0.0110425954945966 : (w' = 85) & (wInit' = 1) +
176 0.0110253551361593 : (w' = 86) & (wInit' = 1) +
177 0.0110064218290199 : (w' = 87) & (wInit' = 1) +
178 0.0109858043914368 : (w' = 88) & (wInit' = 1) +
179 0.0109635124144827 : (w' = 89) & (wInit' = 1) +
180 0.0109395562546102 : (w' = 90) & (wInit' = 1) +
181 0.0109139470256325 : (w' = 91) & (wInit' = 1) +
182 0.0108866965901318 : (w' = 92) & (wInit' = 1) +
183 0.0108578175503007 : (w' = 93) & (wInit' = 1) +
184 0.0108273232382323 : (w' = 94) & (wInit' = 1) +
185 0.0107952277056614 : (w' = 95) & (wInit' = 1) +
186 0.0107615457131754 : (w' = 96) & (wInit' = 1) +
187 0.0107262927189036 : (w' = 97) & (wInit' = 1) +
188 0.0106894848666955 : (w' = 98) & (wInit' = 1) +
189 0.0106511389738004 : (w' = 99) & (wInit' = 1) +
190 0.0106112725180697 : (w' = 100) & (wInit' = 1);
191 endmodule
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